• Title/Summary/Keyword: atomic ratio

Search Result 1,009, Processing Time 0.027 seconds

Physical Properties of TiN films grown by ALD (ALD법으로 증착한 TiN막의 특성)

  • 김재범;홍현석;오기영;이종무
    • Journal of the Korean Vacuum Society
    • /
    • v.11 no.3
    • /
    • pp.159-165
    • /
    • 2002
  • The physical properties of the TiN films deposited by ALD using $TiCl_4$and $NH_3$have been investigated. The TiN deposition rate is ~0.6 $\AA$ under an optimum deposition condition and the resistivity of the TiN films is 200~350 $\mu\Omega$cm . According to the XRD analysis results TiN films are crystallized in the ALD process window. AES analysis results show that the Cl impurity concentration in the TiN films is lower than 1 at% and that the atomic ratio of the TiN films is 1:1. Also it is found by SEM observation that the step coverage of the TiN films on which TiN films with trenches the aspect ratio of which is 10:1 is excellent.

The Effect of Welding Parameters on the Weld Shape in Pulsed GTA Welding of a STS304L Stainless Steel Capsule (STS304L 캡슐의 펄스형 GTA 용접에서 용접변수들이 용접부 형상에 미치는 영향)

  • Lee, Hyoung-Keun;Han, Hyon-Soo;Son, Kwang-Jae
    • Journal of Welding and Joining
    • /
    • v.25 no.5
    • /
    • pp.64-71
    • /
    • 2007
  • The aim of this paper is to investigate the effects of welding parameters on the weld shape in seal-welding of STS304L capsule for manufacturing a radioisotope source which is widely used in nondestructive testing of metal structures using gamma ray. Pulsed gas tungsten arc (Pulsed GTA) welding is performed for thin cross sectional area of the capsule. Seven welding parameters including current waveform parameters and arc length etc. are selected as main process parameters using design of experiment. The weld shape such as bead width, penetration depth, weld area, aspect ratio and area rate is investigated to assess the effects of welding parameters. As results, the combination of pulse duty/welding speed largely affects on bead width, penetration depth, area and aspect ratio. Finally, it is concluded that the key parameters are the combination of pulse duty/welding speed, base current and arc length, and their optimal conditions are 50%/1.77mm/s, 6.4A and 1 mm.

Monte Carlo simulations of criticality safety assessments of transuranic element storage in a pyroprocess facility

  • Kim, Jinhwan;Kim, Jisoo;Lim, Kyung Taek;Ahn, Seong Kyu;Park, Se Hwan;Cho, Gyuseong
    • Nuclear Engineering and Technology
    • /
    • v.50 no.6
    • /
    • pp.815-819
    • /
    • 2018
  • In this study, criticality safety assessments of the potential for storing transuranic element (TRU) ingots via a pyroprocess were evaluated to determine the appropriate TRU storage design parameters, in this case the ratio of the TRU ingot height to the radius and the number of TRU ingot canisters stacked within a container. Various accident situations were modeled over a modeling period of 5 years for a cumulative inventory of TRU ingots with various water densities in submerged containers and with various pitches between the containers in the facility. Under these combinations, we calculated the threshold of TRU height and radius ratio depending on the number of canisters in a container to keep the stored TRU in a subcritical state. The ratio of the TRU ingot height to radius should not exceed 4.5, 1.1, 0.5, 0.3, and 0.2 for two, three, four, five, and six levels of stacked canisters in a container, respectively.

Theoretical simulation on evolution of suspended sodium combustion aerosols characteristics in a closed chamber

  • Narayanam, Sujatha Pavan;Kumar, Amit;Pujala, Usha;Subramanian, V.;Srinivas, C.V.;Venkatesan, R.;Athmalingam, S.;Venkatraman, B.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2077-2083
    • /
    • 2022
  • In the unlikely event of core disruptive accident in sodium cooled fast reactors, the reactor containment building would be bottled up with sodium and fission product aerosols. The behavior of these aerosols is crucial to estimate the in-containment source term as a part of nuclear reactor safety analysis. In this work, the evolution of sodium aerosol characteristics (mass concentration and size) is simulated using HAARM-S code. The code is based on the method of moments to solve the integro-differential equation. The code is updated to FORTRAN-77 and run in Microsoft FORTRAN PowerStation 4.0 (on Desktop). The sodium aerosol characteristics simulated by HAARM-S code are compared with the measured values at Aerosol Test Facility. The maximum deviation between measured and simulated mass concentrations is 30% at initial period (up to 60 min) and around 50% in the later period. In addition, the influence of humidity on aerosol size growth for two different aerosol mass concentrations is studied. The measured and simulated growth factors of aerosol size (ratio of saturated size to initial size) are found to be matched at reasonable extent. Since sodium is highly reactive with atmospheric constituents, the aerosol growth factor depends on the hygroscopic growth, chemical transformation and density variations besides coagulation. Further, there is a scope for the improvement of the code to estimate the aerosol dynamics in confined environment.

Calculations of Radiation Measurement-Related Correction Factors (방사선 측정관련 보정인자 계산)

  • Shin, Hee-Sung;Ro, Seung-Gy;Kim, Ho-Dong
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.1
    • /
    • pp.19-24
    • /
    • 2003
  • The self-attenuation factor for an $^{198}Au$ sample and the 0.412 MeV gamma-ray penetration ratio in the circular Al-cover of the radiation detector have been determined using an analytical solution and MCNP code. The results show that the self-attenuation factors obtained from the analytical solution coincide with those of MCNP code for all but the Au sample with the relatively larger radius. Then the maximum difference between the two methods appears to be 9 % in the Au sample of 1.5 mm radius. It also is revealed that the analytical solutions of the 0.412 MeV gamma-ray penetration ratio in the Al-cover of 7.62 cm radius are consistent with those of the MCNP code within the standard deviation.

Effect of Total Collimation Width on Relative Electron Density, Effective Atomic Number, and Stopping Power Ratio Acquired by Dual-Layer Dual-Energy Computed Tomography

  • Jung, Seongmoon;Kim, Bitbyeol;Yoon, Euntaek;Kim, Jung-in;Park, Jong Min;Choi, Chang Heon
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.165-171
    • /
    • 2021
  • Purpose: This study aimed to evaluate the effect of collimator width on effective atomic number (EAN), relative electron density (RED), and stopping power ratio (SPR) measured by dual-layer dual-energy computed tomography (DL-DECT). Methods: CIRS electron density calibration phantoms with two different arrangements of material plugs were scanned by DL-DECT with two different collimator widths. The first phantom included two dense bone plugs, while the second excluded dense bone plugs. The collimator widths selected were 64 mm×0.625 mm for wider collimators and 16 mm×0.625 mm for narrow collimators. The scanning parameters were 120 kVp, 0.33 second gantry rotation, 3 mm slice thickness, B reconstruction filter, and spectral level 4. An image analysis portal system provided by a computed tomography (CT) manufacturer was used to derive the EAN and RED of the phantoms from the combination of low energy and high energy CT images. The EAN and RED were compared between the images scanned using the two different collimation widths. Results: The CT images with the wider collimation width generated more severe artifacts, particularly with high-density material (i.e., dense bone). RED and EAN for tissues (excluding lung and bones) with the wider collimation width showed significant relative differences compared to the theoretical value (4.5% for RED and 20.6% for EAN), while those with the narrow collimation width were closer to the theoretical value of each material (2.2% for EAN and 2.3% for RED). Scanning with narrow collimation width increased the accuracy of SPR estimation even with high-density bone plugs in the phantom. Conclusions: The effect of CT collimation width on EAN, RED, and SPR measured by DL-DECT was evaluated. In order to improve the accuracy of the measured EAN, RED, and SPR by DL-DECT, CT scanning should be performed using narrow collimation widths.

A Novel Calibration Method Research of the Scale Factor for the All-optical Atomic Spin Inertial Measurement Device

  • Zou, Sheng;Zhang, Hong;Chen, Xi-yuan;Chen, Yao;Fang, Jian-cheng
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.415-420
    • /
    • 2015
  • A novel method to measure the scale factor for the all-optical atomic spin inertial measurement device (ASIMD) is demonstrated in this paper. The method can realize the calibration of the scale factor by a self-consistent method with small errors in the quiescent state. At first, the matured IMU (inertial measurement unit) device was fixed on an optical platform together with the ASIMD, and it has been used to calibrate the scale factor for the ASIMD. The results show that there were some errors causing the inaccuracy of the experiment. By the comparative analysis of theory and experiment, the ASIMD was unable to keep pace with the IMU. Considering the characteristics of the ASIMD, the mismatch between the driven frequency of the optical platform and the bandwidth of the ASIMD was the major reason. An all-optical atomic spin magnetometer was set up at first. The sensitivity of the magnetometer is ultra-high, and it can be used to detect the magnetization of spin-polarized noble gas. The gyromagnetic ratio of the noble gas is a physical constant, and it has already been measured accurately. So a novel calibration method for scale factor based on the gyromagnetic ratio has been presented. The relevant theoretical analysis and experiments have been implemented. The results showed that the scale factor of the device was $7.272V/^{\circ}/s$ by multi-group experiments with the maximum error value 0.49%.

Influence of Electron Beam Irradiation on the Electrical Properties of ZnO Thin Film Transistor (전자빔 조사가 ZnO 박막의 전기적 특성 변화에 미치는 영향)

  • Choi, Jun Hyuk;Cho, In Hwan;Kim, Chan-Joong;Jun, Byung-Hyuk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.1
    • /
    • pp.54-58
    • /
    • 2017
  • The effect of low temperature ($250^{\circ}C$) heat treatment after electron irradiation (irradiation time = 30, 180, 300s) on the chemical bonding and electrical properties of ZnO thin films prepared using a sol-gel process were examined. XPS (X-ray photoelectron spectroscopy) analysis showed that the electron beam irradiation decreased the concentration of M-O bonding and increased the OH bonding. As a result of the electron beam irradiation, the carrier concentration of ZnO films increased. The on/off ratio was maintained at ${\sim}10^5$ and the $V_{TH}$ values shifted negatively from 11 to 1 V. As the irradiation time increased from 0 to 300s, the calculated S. S. (subthreshold swing) of ZnO TFTs increased from 1.03 to 3.69 V/decade. These values are superior when compared the sample heat-treated at $400^{\circ}C$ representing on/off ratio of ${\sim}10^2$ and S. S. value of 10.40 V/decade.

Fabrication of TiO2 Thin Films Using UV-enhanced Atomic Layer Deposition at Room Temperature (자외선 활성화 원자층 성장 기술을 이용한 상온에서 TiO2 박막의 제조)

  • Lee, Byoung-H.;Sung, Myung-M.
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.2
    • /
    • pp.91-95
    • /
    • 2010
  • A UV-enhanced atomic layer deposition (UV-ALD) process was developed to deposit $TiO_2$ thin films on Si substrates using titanium isopropoxide(TIP) and $H_2O$ as precursors with UV light. In the UV-ALD process, the surface reactions were found to be self-limiting and complementary enough to yield a uniform, conformal, pure $TiO_2$ thin film on Si substrates at room temperature. The UV light was very effective to obtain the high-quality $TiO_2$ thin films with good adhesive strength on Si substrates. The UV-ALD process was applied to produce uniform and conformal $TiO_2$ coats into deep trenches with high aspect ratio.

Preparation and Bioevaluation of 177Lu-labelled Anti-CD44 for Radioimmunotherapy of Colon Cancer

  • Lee, SoYoung;Hong, YoungDon;Jung, SungHee;Choi, SunJu
    • Journal of Radiation Industry
    • /
    • v.9 no.4
    • /
    • pp.187-192
    • /
    • 2015
  • CD44 is a particular adhesion molecule and facilitates both cell-cell and cell-matrix interactions. In particular, splice variants of CD44 are particularly overexpressed in a large number of malignancies and carcinomas. In this study, the $^{177}Lu$-labelled CD44 targeting antibody was prepared and bioevaluated in vitro and in vivo. Anti-CD44 was immunoconjugated with the equivalent molar ratio of cysteine-based DTPA-NCS and radioimmunoconjugated with $^{177}Lu$ at room temperature within 15 minutes. The stability was tested in human serum. An in vitro study was carried out in HT-29 human colon cancer cell lines. For the biodistribution study $^{177}Lu$-labelled anti-CD44 was injected in xenograft mice. Anti-CD44 was immunoconjugated with cysteine-based DTPA-NCS and purified by a centricon filter system having a molecular cut-off of 50 kDa. Radioimmunoconjugation with $^{177}Lu$ was reacted for 15 min at room temperature. The radiolabeling yield was >99%, and it was stable in human serum without any fragmentation or degradation. The radioimmunoconjugate showed a high binding affinity on HT-29 colon cancer cell surfaces. In a biodistribution study, the tumor-to-blood ratio of the radioimmunoconjugate was 43 : 1 at 1 day post injection (p.i) in human colon cancer bearing mice. The anti-CD44 monoclonal antibody for the targeting of colon cancer was effectively radioimmunoconjugated with $^{177}Lu$. The in vitro high immunoactivity of this radioimmunoconjugate was determined by a cell binding assay. In addition, the antibody's tumor targeting ability was demonstrated with very high uptake in tumors. This radioimmunoconjugate is applicable to therapy in human colon cancer with highly expressed CD44.