• Title/Summary/Keyword: atomic processes

Search Result 447, Processing Time 0.023 seconds

Mechanochemical Approach for Oxide Reduction of Spent Nuclear Fuels for Pyroprocessing

  • Kim, Sung-Wook;Han, Seung Youb;Jang, Junhyuk;Jeon, Min Ku;Choi, Eun-Young
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.2
    • /
    • pp.255-266
    • /
    • 2021
  • Solid-state mechanochemical reduction combined with subsequent melting consolidation was suggested as a technical option for the oxide reduction in pyroprocessing. Ni ingot was produced from NiO as a starting material through this technique while Li metal was used as a reducing agent. To determine the technical feasibility of this approach for pyroprocessing, which handles spent nuclear fuels, thermodynamic calculations of the phase stabilities of various metal oxides of U and other fission elements were made when several alkaline and alkali-earth metals were used as reducing agents. This technique is expected to be beneficial, not only for oxide reduction but also for other unit processes involved in pyroprocessing.

Study on the Natural Convection Heat Transfer Characteristics in the Air Duct

  • Kim, Y.K.;Lee, Y.B.;Park, S.K.;J.S. Hwang;H.Y. Nam
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.451-456
    • /
    • 1997
  • Temperature distribution measurements in the mockup apparatus of reactor vessel were performed to determine the effective thermal conductivity of porous media with different geometry and to obtain the experimental data for the heat transfer processes by natural convection occurring in the air duct. The temperature distributions at four separated sections with different arrangements of porous media have different slopes according to the geometrical configuration. From the measured temperature distribution, effective thermal conductivity have been derived using the least square fitting method. The test at air duct was performed to the high heat removal at 3.4kW/$m^2$ by the natural convection from the outer wall to the air. And also the temperature distributions in the air duct agree well with the 1/7th power-law turbulent temperature distribution. The obtained heat transfer data have been compared with the Shin's and Sieger's correlations.

  • PDF

Effects of Ionizing Radiation on Development of Invertase Activity, Nucleic Acids, and Respiratory Activity in Aging Potato Tuber Slices (방사선(放射線) 조사(照射)가 숙성(熟成)시킨 감자 괴경(塊莖) 박편(薄片)에서 Invertase, 핵산(核酸) 및 호흡작용(呼吸作用)의 발달(發達)에 미치는 영향(影響))

  • Lee, Mie-Soon;Kim, Hong-Lyour;Hong, Yung-Pyo
    • Korean Journal of Food Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.157-162
    • /
    • 1973
  • Mode of action study of irradiation was performed with potato tuber slices, $1mm{\times}1.5cm,$ aged on moist filter paper under aseptic technique. The time courses of invertase activity, nucleic acids and respiratory activity were determined, and sensitivities of these three processes to ionizing radiation were measured. None of those processes was severely inhibited by the dosage suppressing cell division. The result of $^3H-thymidine$ incorporation suggests that the reaction site of ionizing radiation might be existent during mitosis or $G_2$ period.

  • PDF

Atomic Scale Modeling of Chemical Mechanical Polishing Process (Chemical Mechanical Polishing 공정에 관한 원자단위 반응 모델링)

  • Byun, Ki-Ryang;Kang, Jeong-Won;Song, Ki-Oh;Hwang, Ho-Jung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.5
    • /
    • pp.414-422
    • /
    • 2005
  • This paper shows the results of atomistic modeling for the Interaction between spherical nano abrasive and substrate In chemical mechanical polishing processes. Atomistic modeling was achieved from 2-dimensional molecular dynamics simulations using the Lennard-jones 12-6 potentials. We proposed and investigated three mechanical models: (1) Constant Force Model; (2) Constant Depth Model, (3) Variable Force Model, and three chemical models, such as (1) Chemically Reactive Surface Model, (2) Chemically Passivating Surface Model, and (3) Chemically Passivating-reactive Surface Model. From the results obtained from classical molecular dynamics simulations for these models, we concluded that atomistic chemical mechanical polishing model based on both Variable Force Model and Chemically Passivating-reactive Surface Model were the most suitable for realistic simulation of chemical mechanical polishing in the atomic scale. The proposed model can be extended to investigate the 3-dimensional chemical mechanical polishing processes in the atomic scale.

A Formal Guidance for Handling Different Uncertainty Sources Employed in the Level 2 PSA

  • Ahn Kwang-Il;Yang Joon-Eon;Ha Jae-Joo
    • Nuclear Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.83-103
    • /
    • 2004
  • The methodological framework of the Level 2 PSA appears to be currently standardized in a formalized fashion, but there have been different opinions on the way the sources of uncertainty are characterized and treated. This is primarily because the Level 2 PSA deals with complex phenomenological processes that are deterministic in nature rather than random processes, and there are no probabilistic models characterizing them clearly. As a result, the probabilistic quantification of the Level 2 PSA CET / APET is often subjected to two sources of uncertainty: (a) incomplete modeling of accident pathways or different predictions for the behavior of phenomenological events and (b) expert-to-expert variation in estimating the occurrence probability of phenomenological events. While a clear definition of the two sources of uncertainty involved in the Level 2 PSA makes it possible to treat an uncertainty in a consistent manner, careless application of these different sources of uncertainty may produce different conclusions in the decision-making process. The primary purpose of this paper is to characterize typical sources of uncertainty that would often be addressed in the Level 2 PSA and to provide a formal guidance for quantifying their impacts on the PSA Level 2 risk results. An additional purpose of this paper is to give a formal approach on how to combine random uncertainties addressed in the Level 1 PSA with subjectivistic uncertainties addressed in the Level 2 PSA.

Phase Behavior of a PEO-PPO-PEO Triblock Copolymer in Aqueous Solutions: Two Gelation Mechanisms

  • Park, Moon-Jeong;Kookheon Char;Kim, Hong-Doo;Lee, Chang-Hee;Seong, Baek-Seok;Han, Young-Soo
    • Macromolecular Research
    • /
    • v.10 no.6
    • /
    • pp.325-331
    • /
    • 2002
  • Phase behavior of a PEO-PPO-PEO (Pluronic P103) triblock copolymer in water is investigated using small-angle neutron scattering (SANS), small-angle X-ray scattering (SAXS), dynamic light scattering (DLS) and rheology. Pluronic P103 shows apparent two gel states in different temperature regions. The first sol-to-gel transition at a lower temperature (i.e., the hard gel I state) turns out to be the hexagonal microphase as evidenced by the combined SANS and SAXS and the frequency dependence of both G′ and G" in rheology. In contrast to the hard gel I, the second sol-to-gel transition (i. e., the hard gel II state) at a higher temperature represents the block copolymer micelles in somewhat disordered state rather than the ordered state seen in the hard gel I. Moreover, turbidity change depending only on the temperature with four distinct regions is observed and the large aggregates with size larger than 5,000 nm are detected with DLS in the turbid solution region. Based upon the present study, two different gelation mechanisms for aqueous PEO-PPO-PEO triblock copolymer solutions are proposed.

Analysis of the Residence Time Distribution for a Variable Feed Rate System by the State-space Equation (가변 유입유량 공정시스템에 대한 상태방정식을 이용한 체재시간분포 해석)

  • Moon, Jinho;Jung, Sung-Hee;Kim, Jong-Bum
    • Journal of Radiation Industry
    • /
    • v.4 no.1
    • /
    • pp.85-89
    • /
    • 2010
  • The radioactive experiments are carried out for diagnosis of a variety of industrial processes in terms of the operation condition and the efficiency by measuring the residence time distribution. However, it is not easy to interpret the residence time distribution using the conventional methods when the flow rate is not constant and a number of processes are coupled in a complicated manner. In these cases, they can be analyzed by describing the system with mathematical models that can be defined with the state-space equations. In this paper, the residence time distribution of sludge was measured with a radiotracer, $^{46}Sc-EDTA$, in the digester of which the flow rate varies with time. The digester was assumed as a linear time variant system since the flow rate changed during the experiment and the operation efficiency of the digester was calculated by applying the state-spae equations.

Mass Spectrometry Imaging of Microbes

  • Yang, Hyojik;Goodlett, David R.;Ernst, Robert K.;Scott, Alison J.
    • Mass Spectrometry Letters
    • /
    • v.11 no.3
    • /
    • pp.41-51
    • /
    • 2020
  • Microbes influence many aspects of human life from the environment to health, yet evaluating their biological processes at the chemical level can be problematic. Mass spectrometry imaging (MSI) enables direct evaluation of microbial chemical processes at the atomic to molecular levels without destruction of valuable two-dimensional information. MSI is a label-free method that allows multiplex spatiotemporal visualization of atomic- or molecular-level information of microbial and microberelated samples. As a result, microbial MSI has become an important field for both mass spectrometrists and microbiologists. In this review, basic techniques for microbial MSI, such as ionization methods and analyzers, are explored. In addition, we discuss practical applications of microbial MSI and various data-processing techniques.

Study on production process of graphite for biological applications of 14C-accelerator mass spectrometry

  • Ha, Yeong Su;Kim, Kye-Ryung;Cho, Yong-Sub;Choe, Kyumin;Kang, Chaewon
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.6 no.1
    • /
    • pp.20-26
    • /
    • 2020
  • Accelerator mass spectrometry (AMS) is a powerful detection technique with the exquisite sensitivity and high precision compared with other traditional analytical techniques. Accelerator mass spectrometry can be widely applied in the technique of radiocarbon dating in the fields of archeology, geology and oceanography. The ability of accelerator mass spectrometry to measure rare 14C concentrations in microgram and even sub-microgram amounts suggests that extension of 14C-accelerator mass spectrometry to biomedical field is a natural and attractive application of the technology. Drug development processes are costly, risky, and time consuming. However, the use of 14C-accelerator mass spectrometry allows absorption, distribution, metabolism and excretion (ADME) studies easier to understand pharmacokinetics of drug candidates. Over the last few decades, accelerator mass spectrometry and its applications to preclinical/clinical trials have significantly increased. For accelerator mass spectrometry analysis of biological samples, graphitization processes of samples are important. In this paper, we present a detailed sample preparation procedure to apply to graphitization of biological samples for accelerator mass spectrometry.

Molecular Level Detection of Heavy Metal Ions Using Atomic Force Microscope (원자간인력현미경을 이용한 분자수준의 중금속 이온 검출)

  • Kim, Younghun;Kang, Sung Koo;Choi, Inhee;Lee, Jeongjin;Yi, Jongheop
    • Clean Technology
    • /
    • v.11 no.2
    • /
    • pp.69-74
    • /
    • 2005
  • A metal ion detector with a submicron size electrode was fabricated by field-induced AFM oxidation. The square frame of the mesa pattern was functionalized by APTES for the metal ion detection, and the remaining portion was used as an electrode by the self-assembly of MPTMS for Au metal deposition. The conductance changed with the quantity of adsorbed copper ions, due to electron tunneling between the mobile and surface electrodes. The smaller electrode has a lower limit of detection due to the enhancement in electron tunneling through metal ions that are adsorbed between the conductive-tip (mobile) and the surface (fixed) electrode. This two-electrode system immobilized with different functional groups was successfully used in the selective adsorption and detection of target materials.

  • PDF