• Title/Summary/Keyword: atomic force microscopy

Search Result 1,106, Processing Time 0.03 seconds

Isolation of Listeria monocytogenes by Immunomagnetic Separation and Atomic Force Microscopy

  • Mercanolu, Birce;Aykut, S.;Ergun, M.Ali;Tan, Erdal
    • Journal of Microbiology
    • /
    • v.41 no.2
    • /
    • pp.144-147
    • /
    • 2003
  • Listeria monocytogenes is a pathogen of major concern to the food industry and the potential cause of severe infections such as listeriosis. Early detection of this foodborne pathogen is important in order to eliminate its potential hazards. So, immunomagnetic separation (IMS) has been suggested as a means of reducing the total analysis time and for improving the sensitivity of detection. Atomic force microscopy (AFM) has been used for measuring the topographic properties of sample surfaces at nanometer scale. In this study, we used AFM to confirm both the sensitivity and the specificity of IMS. Regarding AFM analysis, the length and the width of the bacteria, which were in agreement with literature values, were found to be 2.993 $\mu\textrm{m}$ and 0.837 $\mu\textrm{m}$, respectively. As a result, AFM helped us both characterize and measure the bacterial and bead structures.

Atomic Force Microscopy Applications to the Next Generation Lithium-ion Batteries (차세대 리튬이온이차전지 연구에서의 원자력 현미경 활용)

  • Lee, Ji Hyun;Gong, Sang Hyuk;Kim, Hyeong Woo;Kim, Hyung-Seok
    • Ceramist
    • /
    • v.22 no.4
    • /
    • pp.381-392
    • /
    • 2019
  • Recently, demands for lithium-ion batteries (LIB) in various fields are increasing. In particular, understanding of the reaction mechanism occurring at the electrode-electrolyte surface/interface is significant for the development of advanced LIBs. Meanwhile, research and development of LIBs highly requires a new specific characterization approach. For example, atomic force microscopy (AFM) has been utilized to the LIB research field for various purposes such as investigation of topography, electrochemical reactions, ion transport phenomena, and measurement of surface potential at high resolution. Advances in the AFM analysis have made it possible to inspect various material properties such as surface friction and Young's modulus. Therefore, this technique is expected to be a powerful method in the LIB research field. Here, we review and discuss ways to apply AFM to LIB studies.

Analytical Electron Microscopy and Atomic Force Microscopy Reveal a Physical Mechanism of Silicon-Induced Rice Resistance to Blast

  • Kim Ki Woo;Han Seong Sook;Kim Byung Ryun;Park Eun Woo
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2005.10a
    • /
    • pp.15-20
    • /
    • 2005
  • Locations of silicon accumulation in rice leaves and its possible association with resistance to rice blast were investigated by analytical electron microscopy and atomic force microscopy. A blast-susceptible cultivar, Jinmi, and partially resistant cultivars, Hwaseong and Suwon345, were grown under a hydroponic culture system with modified Yoshida's nutrient solution. Electron-dense silicon layers were frequently found beneath the cuticle in epidermal cell walls of silicon-treated plants. Increasing levels of silicon were detected in the outer regions of epidermal cell walls. Silicon was present mainly in epidermal cell walls, middle lamella, and Intercellular spaces within subepidermal tissues. Furthermore, silicon was prevalent throughout the leaf surface with relatively small deposition on stomatal guard cells in silicon-treated plants. Force-distance curve measurements revealed relative hardness and smaller adhesion force in silicon-treated plants (18.65 uN) than control plants (28.39 uN). Moreover, force modulation microscopy showed higher mean height values of elastic Images In silicon-treated plants(1.26 V) than in control plants (0.44 V), implying the increased leaf hardness by silicon treatment. These results strongly suggest that silicon-induced cell wall fortification of rice leaves may be closely associated with enhanced host resistance to blast.

  • PDF

Lateral Force Calibration in Liquid Environment using Multiple Pivot Loading (Multiple Pivot loading 방법을 이용한 액체 환경에서의 수평방향 힘 교정)

  • Kim, Lyu-Woon;Chung, Koo-Hyun
    • Tribology and Lubricants
    • /
    • v.29 no.2
    • /
    • pp.91-97
    • /
    • 2013
  • Quantifying the nanoscale force between the atomic force microscopy (AFM) probe of a force-sensing cantilever and the sample is one of the challenges faced by AFM researchers. The normal force calibration is straightforward; however, the lateral force is complicated due to the twisting motion of the cantilever. Force measurement in a liquid environment is often needed for biological applications; however, calibrating the force of the AFM probes for those applications is more difficult owing to the limitations of conventional calibration methods. In this work, an accurate nondestructive lateral force calibration method using multiple pivot loading was proposed for liquid environment. The torque sensitivity at the location of the integrated probe was extrapolated based on accurately measured torque sensitivities across the cantilever width along a few cantilever lengths. The uncertainty of the torque sensitivity at the location of the integrated tip was about 13%, which is significantly smaller than those for other calibration methods in a liquid environment.

Quantitative Measurement of Nano-scale Force using Atomic Force Microscopy (AFM을 이용한 나노스케일 힘의 정량적 측정)

  • Chung, Koo-Hyun
    • Tribology and Lubricants
    • /
    • v.28 no.2
    • /
    • pp.62-69
    • /
    • 2012
  • Atomic force microscopy (AFM) has been widely utilized as a versatile tool not only for imaging surfaces but also for understanding nano-scale interfacial phenomena. By measuring the responses of the photo detector due to bending and torsion of the cantilever, which are caused by the interactions between the probe and the sample surface, various interfacial phenomena and properties can be explored. One of the challenges faced by AFM researchers originates in the physics of measuring the small forces that act between the probe of a force sensing cantilever and the sample. To understand the interactions between the probe and the sample quantitatively, the force calibration is essential. In this work, the procedures used to calibrate AFM instrumentation for nano-scale force measurement in normal and lateral directions are reviewed.

Nonlinear dynamic responses of cracked atomic force microscopes

  • Alimoradzadeh, M.;Akbas, S.D.
    • Structural Engineering and Mechanics
    • /
    • v.82 no.6
    • /
    • pp.747-756
    • /
    • 2022
  • This study presents the nonlinear free and forced vibrations of a cracked atomic force microscopy (AFM) cantilever by using the modified couple stress. The cracked section of the AFM cantilever is considered and modeled as rotational spring. In the frame work of Euler-Bernoulli beam theory, Von-Karman type of geometric nonlinear equation and the modified couple stress theory, the nonlinear equation of motion for the cracked AFM is derived by Hamilton's principle and then discretized by using the Galerkin's method. The semi-inverse method is utilized for analysis nonlinear free oscillation of the system. Then the method of multiple scale is employed to investigate primary resonance of the system. Some numerical examples are presented to illustrate the effects of some parameters such as depth of the crack, length scale parameter, Tip-Mass, the magnitude and the location of the external excitation force on the nonlinear free and forced vibration behavior of the system.

An Investigation of Worn DLC Coatings Using Atomic Force Microscopy (DLC코팅 마모면에 대한 원자력 현미경을 이용한 고찰)

  • ;;S. A. Chizhik
    • Tribology and Lubricants
    • /
    • v.18 no.2
    • /
    • pp.138-143
    • /
    • 2002
  • Abstract - Tribofilms formed on won surface protect the DLC coating surface and decrease the fiction coefficient. However it is very difficult to evaluate their micromechanical properties due to their small thickness, inhomogeneity and discontinuity. The phase contrast images in tapping mode atomic farce microscopy allow an estimation of inhomogeneity in micromechanical properties of the sample surface. The purpose of this investigation is to demonstrate how the phase contrast images contribute to the characterization of thin tribofilms.

Surface Modification Studies by Atomic Force Microscopy for Ar-Plasma Treated Polyethylene

  • Seo, Eun-Deock
    • Macromolecular Research
    • /
    • v.10 no.5
    • /
    • pp.291-295
    • /
    • 2002
  • Atomic force microscopy(AFM) was used to study the polyethylene(PE) surfaces grafted and immobilized with acrylic acid by Ar plasma treatment. The topographical images and parameters including RMS roughness and Rp-v value provided an appropriate means to characterize the surfaces. The plasma grafting and immobilization method were a useful tool for the preparation of surfaces with carboxyl group. However, the plasma immobilization method turned out to have a limitation to use as a means of preparation of PE surface with specific functionalities, due to ablation effect during the Ar plasma treatment process.

Fabrication of metal nanodots and nanowires by atomic force microscopy nanomachining

  • Lin, Heh-Nan
    • Transactions of the Society of Information Storage Systems
    • /
    • v.3 no.1
    • /
    • pp.43-46
    • /
    • 2007
  • The fabrication of metal nanostructures by a combination of atomic force microscopy nanomachining on a thin polymer resist, metal coating and lift-off is reported. Nanodots with sizes and nanowires with widths ranging between 50 and 100 nm have been successfully created. The present work exemplifies the feasibility and effectiveness of using a single-layer resist in comparison with a two-layer resist. In addition, the localized surface plasmon resonance peaks of the metal nanostructures have been measured and the selective growths of zinc oxide nanowires on the metal nanostructures are demonstrated.

  • PDF