• Title/Summary/Keyword: atomic data

Search Result 1,410, Processing Time 0.029 seconds

A Study on the Radio-activity Reduction Method for the Decladding Hull

  • Kim, Jong-Ho;Jung, In-Ha;Park, Jang-Jin;Shin, Jin-Myeong;Lee, Ho-Hee;Yang, Myung-Seung
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.02a
    • /
    • pp.130-139
    • /
    • 2004
  • The cladding materials remaining after reprocessing process of the nuclear fuel, generally called as hulls, are classified as a high-level radioactive waste. They are usually packaged in the container for disposal after being compacted, melted, or solidified into the matrix. The efforts to fabricate a better ingot for a more favorable disposal to the environment have failed due to the technical difficulties encountered in the chemical decontamination method. In the early 1990s, the accumulation of radio-chemical data on hulls and the advent of new technology such as a laser or plasma have made the pre-treatment of the hulls more efficient. This paper summarizes the information regarding the radio-chemical analysis of the hull through a literature survey and determines the characteristics of the hull and depth profile of the radio-nuclides within the hull thickness. The feasibility study was carried out to evaluate the reduction of the radioactivity by peeling off the surface of the hull with the application of laser technology.

  • PDF

Separation of Burnup Monitors in Spent Nuclear Fuel Samples by Liquid Chromatography

  • Joe, Kih-Soo;Jeon, Young-Shin;Kim, Jung-Suck;Han, Sun-Ho;Kim, Jong-Gu;Kim, Won-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.4
    • /
    • pp.569-574
    • /
    • 2005
  • A coupled column liquid chromatography system was applied for the separation of the burnup monitors in spent nuclear fuel sample solutions. A reversed phase column was studied for the adsorption behavior of uranyl ions using alpha-hydroxyisobutyric acid as an eluent and used for the separation of plutonium and uranium. A cation exchange column prepared by coating 1-eicosylsulfate onto the reversed phase column was used for the separation of the lanthanides. In addition, retention of Np was checked with the reversed phase column and cation exchange column, respectively, according to the oxidation states to observe the interference effect for the separation of burnup monitors. This chromatography system showed a great reduction in separation time compared to a conventional anion exchange method. A good agreement from the burnup data was obtained between for this method and a conventional anion exchange method to within 1% of a difference for the spent nuclear fuel samples of about 40 GWD/MTU.

DEVELOPMENT OF THE MATRA-LMR-FB FOR FLOW BLOCKAGE ANALYSIS IN A LMR

  • Ha, Kwi-Seok;Jeong, Hae-Yong;Chang, Won-Pyo;Kwon, Young-Min;Cho, Chung-Ho;Lee, Yong-Bum
    • Nuclear Engineering and Technology
    • /
    • v.41 no.6
    • /
    • pp.797-806
    • /
    • 2009
  • The Multichannel Analyzer for Transient and steady-state in Rod Array - Liquid Metal Reactor for Flow Blockage analysis (MATRA-LMR-FB) code for the analysis of a subchannel blockage has been developed and evaluated through several experiments. The current version of the code is improved here by the implementation of a distributed resistance model which accurately considers the effect of flow resistance on wire spacers, by the addition of a turbulent mixing model, and by the application of a hybrid scheme for low flow regions. Validation calculations for the MATRA-LMR-FB code were performed for Oak Ridge National Laboratory (ORNL) 19-pin tests with wire spacers and Karlsruhe 169-pin tests with grid spacers. The analysis of the ORNL 19-pin tests conducted using the code reveals that the code has sufficient predictive accuracy, within a range of 5 $^{\circ}C$, for the experimental data with a blockage. As for the results of the analyses, the standard deviation for the Karlsruhe 169-pin tests, 0.316, was larger than the standard deviation for the ORNL 19-pin tests, 0.047.

Measurement of the Elemental Composition in Airborne Particulate Matter Using Instrumental Neutron Activation Analys

  • Chung, Yong-Sam;Lim, Jong-Myoung;Moon, Jong-Hwa;Kim, Sun-Ha;Cho, Hyun-Je;Kim, Young-Jin
    • Nuclear Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.450-459
    • /
    • 2004
  • For the evaluation of emission sources by air sampling, airborne particulate matter for fine (<2.5 ${\mu}m2$ EAD : $PM_{2.5}$) and coarse partical (2.5-10 ${\mu}m2$ EAD : $PM_{2.5-10}$ fractions were collected using a Gent stacked filter unit low volume sampler and two types of polycarbonate filters. Air samples were collected twice monthly at two regions in and around Daejeon city in the Republic of Korea from January to December 2002. Monthly mass concentration of $PM_{2.5}$ and $PM_{2.5-10}$ were measured and the concentrations of 10 marker elements (Al, Sc, Ti ; Na, Cl ; As, V. Sb, Br, Se) were determined by an instrumental neutron activation analysis. Analytical quality control was corried out using certified reference materials. Enrichment factors were also calculated from the monitoring data to classify the anthropogenic and crustal origins.

Impact parameter prediction of a simulated metallic loose part using convolutional neural network

  • Moon, Seongin;Han, Seongjin;Kang, To;Han, Soonwoo;Kim, Kyungmo;Yu, Yongkyun;Eom, Joseph
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1199-1209
    • /
    • 2021
  • The detection of unexpected loose parts in the primary coolant system in a nuclear power plant remains an extremely important issue. It is essential to develop a methodology for the localization and mass estimation of loose parts owing to the high prediction error of conventional methods. An effective approach is presented for the localization and mass estimation of a loose part using machine-learning and deep-learning algorithms. First, a methodology was developed to estimate both the impact location and the mass of a loose part at the same times in a real structure in which geometric changes exist. Second, an impact database was constructed through a series of impact finite-element analyses (FEAs). Then, impact parameter prediction modes were generated for localization and mass estimation of a simulated metallic loose part using machine-learning algorithms (artificial neural network, Gaussian process, and support vector machine) and a deep-learning algorithm (convolutional neural network). The usefulness of the methodology was validated through blind tests, and the noise effect of the training data was also investigated. The high performance obtained in this study shows that the proposed methodology using an FEA-based database and deep learning is useful for localization and mass estimation of loose parts on site.

Overestimation of Radioactivity Concentration of Difficult-To-Measure Radionuclides in Scaling Factor Methodology

  • Park, Junghwan;Kim, Tae-Hyeong;Lee, Jeongmook;Kim, Junhyuck;Kim, Jong-Yun;Lim, Sang Ho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.3
    • /
    • pp.367-386
    • /
    • 2021
  • The overestimation and underestimation of the radioactivity concentration of difficult-to-measure radionuclides can occur during the implementation of the scaling factor (SF) method because of the uncertainties associated with sampling, radiochemical analysis, and application of SFs. Strict regulations ensure that the SF method as an indirect method does not underestimate the radioactivity of nuclear wastes; however, there are no clear regulatory guidelines regarding the overestimation. This has been leading to the misuse of the SF methodology by stakeholders such as waste disposal licensees and regulatory bodies. Previous studies have reported instances of overestimation in statistical implementation of the SF methodology. The analysis of the two most popular linear models of the SF methodology showed that severe overestimation may occur and radioactivity concentration data must be dealt with care. Since one major source of overestimation is the use of minimum detectable activity (MDA) values as true activity values, a comparative study of instrumental techniques that could reduce the MDAs was also conducted. Thermal ionization mass spectrometry was recommended as a suitable candidate for the trace level analysis of long-lived beta-emitters such as iodine-129. Additionally, the current status of the United States and Korea was reviewed from the perspective of overestimation.

Statistical Methodologies for Scaling Factor Implementation: Part 1. Overview of Current Scaling Factor Method for Radioactive Waste Characterization

  • Kim, Tae-Hyeong;Park, Junghwan;Lee, Jeongmook;Kim, Junhyuck;Kim, Jong-Yun;Lim, Sang Ho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.4
    • /
    • pp.517-536
    • /
    • 2020
  • The radionuclide inventory in radioactive waste from nuclear power plants should be determined to secure the safety of final repositories. As an alternative to time-consuming, labor-intensive, and destructive radiochemical analysis, the indirect scaling factor (SF) method has been used to determine the concentrations of difficult-to-measure radionuclides. Despite its long history, the original SF methodology remains almost unchanged and now needs to be improved for advanced SF implementation. Intense public attention and interest have been strongly directed to the reliability of the procedures and data regarding repository safety since the first operation of the low- and intermediate-level radioactive waste disposal facility in Gyeongju, Korea. In this review, statistical methodologies for SF implementation are described and evaluated to achieve reasonable and advanced decision-making. The first part of this review begins with an overview of the current status of the scaling factor method and global experiences, including some specific statistical issues associated with SF implementation. In addition, this review aims to extend the applicability of SF to the characterization of large quantities of waste from the decommissioning of nuclear facilities.

Modified 𝜃 projection model-based constant-stress creep curve for alloy 690 steam generator tube material

  • Moon, Seongin;Kim, Jong-Min;Kwon, Joon-Yeop;Lee, Bong-Sang;Choi, Kwon-Jae;Kim, Min-Chul;Han, Sangbae
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.917-925
    • /
    • 2022
  • Steam generator (SG) tubes in a nuclear power plant can undergo rapid changes in pressure and temperature during an accident; thus, an accurate model to predict short-term creep damage is essential. The theta (𝜃) projection method has been widely used for modeling creep-strain behavior under constant stress. However, many creep test data are obtained under constant load, so creep rupture behavior under a constant load cannot be accurately simulated due to the different stress conditions. This paper proposes a novel methodology to obtain the creep curve under constant stress using a modified 𝜃 projection method that considers the increase in true stress during creep deformation in a constant-load creep test. The methodology is validated using finite element analysis, and the limitations of the methodology are also discussed. The paper also proposes a creep-strain model for alloy 690 as an SG material and a novel creep hardening rule we call the damage-fraction hardening rule. The creep hardening rule is applied to evaluate the creep rupture behavior of SG tubes. The results of this study show its great potential to evaluate the rupture behavior of an SG tube governed by creep deformation.

Integral effect tests for intermediate and small break loss-of-coolant accidents with passive emergency core cooling system

  • Byoung-Uhn Bae;Seok Cho;Jae Bong Lee;Yu-Sun Park;Jongrok Kim;Kyoung-Ho Kang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2438-2446
    • /
    • 2023
  • To cool down a nuclear reactor core and prevent the fuel damage without a pump-driven active component during any anticipated accident, the passive emergency core cooling system (PECCS) was designed and adopted in an advanced light water reactor, i-POWER. In this study, for a validation of the cooling capability of PECCS, thermal-hydraulic integral effect tests were performed with the ATLAS facility by simulating intermediate and small break loss-of-coolant accidents (IBLOCA and SBLOCA). The test result showed that PECCS could effectively depressurize the reactor coolant system by supplying the safety injection water from the safety injection tanks (SITs). The result pointed out that the safety injection from IRWST should have been activated earlier to inhibit the excessive core heat-up. The sequence of the PECCS injection and the major thermal hydraulic transient during the SBLOCA transient was similar to the result of the IBLOCA test with the equivalent PECCS condition. The test data can be used to evaluate the capability of thermal hydraulic safety analysis codes in predicting IBLOCA and SBLOCA transients under an operation of passive safety system.

Environmental Monitoring for the Decision-Aiding on Public Protective Actions in a Nuclear Emergency (원자력 비상시 주민 보호조치 결정 지원을 위한 환경감시)

  • Choi Y.H.;Kang H.S.;Jun I.;Hwang W.T.;Keum D.K.;Han M.H.;Choi G.S.;Lee H.S.;Lee C.W.
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.06a
    • /
    • pp.496-512
    • /
    • 2005
  • It is internationally proposed that generic intervention levels (GILs) and generic action levels, determined based on cost-benefit analyses, be used as the decision criteria for public protective actions in a nuclear emergency. Operational intervention levels (OILs) are directly or easily measurable quantities corresponding to these generic levels. To assess the necessity of protective actions in a nuclear emergency, it is important that the environmental monitoring data required for applying and revising OILs should be promptly produced. It is discussed what and how to do for this task in the course of emergency response and preparedness.

  • PDF