Browse > Article
http://dx.doi.org/10.1016/j.net.2021.09.008

Modified 𝜃 projection model-based constant-stress creep curve for alloy 690 steam generator tube material  

Moon, Seongin (Korea Atomic Energy Research Institute)
Kim, Jong-Min (Korea Atomic Energy Research Institute)
Kwon, Joon-Yeop (Korea Atomic Energy Research Institute)
Lee, Bong-Sang (Korea Atomic Energy Research Institute)
Choi, Kwon-Jae (Korea Atomic Energy Research Institute)
Kim, Min-Chul (Korea Atomic Energy Research Institute)
Han, Sangbae (Dassault Systemes Korea)
Publication Information
Nuclear Engineering and Technology / v.54, no.3, 2022 , pp. 917-925 More about this Journal
Abstract
Steam generator (SG) tubes in a nuclear power plant can undergo rapid changes in pressure and temperature during an accident; thus, an accurate model to predict short-term creep damage is essential. The theta (𝜃) projection method has been widely used for modeling creep-strain behavior under constant stress. However, many creep test data are obtained under constant load, so creep rupture behavior under a constant load cannot be accurately simulated due to the different stress conditions. This paper proposes a novel methodology to obtain the creep curve under constant stress using a modified 𝜃 projection method that considers the increase in true stress during creep deformation in a constant-load creep test. The methodology is validated using finite element analysis, and the limitations of the methodology are also discussed. The paper also proposes a creep-strain model for alloy 690 as an SG material and a novel creep hardening rule we call the damage-fraction hardening rule. The creep hardening rule is applied to evaluate the creep rupture behavior of SG tubes. The results of this study show its great potential to evaluate the rupture behavior of an SG tube governed by creep deformation.
Keywords
Creep; Theta projection method; Alloy 690; Steam generator tube; Constant-stress creep curve; Creep hardening rule;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 B. Derby, M.F. Ashby, Power-laws and A-n correlation in creep, Scripta Metall. 18 (1984) 1079-1084.   DOI
2 P.E. MacDonald, V.N. Shah, L.W. Ward, P.G. Elliso, Steam Generator Tube Failures, U.S. NRC, 1996. NUREG/CR-6365.
3 K.J. Karwoski, G.L. Maker, M.G. Yoder, U.S. Operating Experience with Thermally Treated Alloy 690 Steam Generator Tubes, U.S., NRC, 2007. NUREG-1841.
4 ECCC, Recommendations and guidance for the assessment of creep strain and creep strength data, ECCC Recommend. 5 (2003) 38.
5 W. Harrison, Z. Abdallah, M. Whittaker, A model for creep and creep damage in the γ-titanium aluminide Ti-45Al-2Mn-2Nb, Materials 7 (2014) 2194-2209.   DOI
6 S. Moon, J.M. Kim, J.Y. Kwon, B.S. Lee, K.J. Choi, M.C. Kim, Creep strain modeling for alloy 690 SG tube material based on modified theta projection method, Nucl. Eng. Technol., In Review..
7 W.D. Day, A.P. Gordon, Life fraction hardening applied to a modified theta projection creep model for a Nickel-based super-alloy, Proc. ASME Turbo Expo (2014). GT2014-25881, 2014.
8 S. Moon, Y.S. Chang, Y.J. Kim, J.H. Lee, M.H. Song, Y.H. Choi, S.S. Hwang, Assessment of plastic collapse behavior for tubes with collinear cracks, Eng. Fract. Mech. 73 (2006) 296-308.   DOI
9 M.S. Haque, C.M. Stewart, Comparative analysis of the sin-hyperbolic and Kachanov-Rabotnov creep-damage models, Int. J. Pres. Ves. Pip. 171 (2019) 1-9.   DOI
10 D.L. May, A.P. Gordon, The application of the Norton-bailey law for creep prediction through power law regression, Proc. ASME Turbo Expo (2013). GT2013-96008.
11 R.W. Evans, Statistical scatter and variability of creep property estimates in θ projection method, Mater. Sci. Technol. 5 (1989) 699-707.   DOI
12 N.E. Dowling, Mechanical Behavior of Materials, Prentice Hall, 1999.
13 B.S. Lee, J.M. Kim, J.Y. Kwon, K.J. Choi, M.C. Kim, A practical power law creep modeling of alloy 690 SG tube materials, Nucl. Eng. Technol. (2021). Available Online.
14 R.W. Evans, L. Beden, B. Wilshire, On Creep and Fracture of Engineering Materials and Structures, Pineridge Press, Swansea, 1984, p. 1277.
15 C. Fu, Y. Chen, X. Yuan, S. Tin, S. Antonov, K. Yagi, Q. Feng, A modified θ projection model for constant load creep curves-II. Application of creep life prediction, J. Mater. Sci. Technol. 35 (2019) 687-694.   DOI
16 Dassault, ABAQUS version 6.14. User's Manual, Dassault Systems Simulia, 2018.
17 S. Majumdar, Prediction of structural integrity of steam generator tubes under severe accident conditions, Nucl. Eng. Des. 194 (1999) 31-55.   DOI
18 Idaho National Engineering Laboratory, Risk assessment of severe accident-induced steam generator tube rupture, NUREG 1570 (1998).
19 S. Sancaktar, M. Salay, R. Lyengar, A. Azarm, S. Majumdar, Consequential SGTR analysis for westinghouse and combustion engineering plants with thermally treated alloy, Steam Generator Tubes 600 (2016), 690, NUREG-2195.
20 S. Majumdar, W.J. Shack, D.R. Diercks, K. Mruk, J. Franklin, L. Knoblich, Failure behavior of internally pressurized flawed and unflawed steam generator tubing at high temperatures-experiments and comparison with model predictions, NUREG/CR 6575 (1998).
21 C. Fu, Y. Chen, X. Yuan, S. Tin, S. Antonov, K. Yagi, Q. Feng, A modified θ projection model for constant load creep curves-I. Introduction of the model, J. Mater. Sci. Technol. 35 (2019) 223-230.   DOI
22 V.S. Srinivasan, B.K. Choudhary, M.D. Mathew, T. Jayakumar, Creep behaviour of 9Cr-1Mo ferritic steel using theta-projection approach and evolution of a damage criterion, Trans. SMiRT 21 (DiveI) (2011). Paper, ID# 779.
23 J. Kim, W. Kim, C. Kim, Evaluation of Creep Properties of Alloy 690 Steam Generator Tubes at High Temperature Using Tube Specimen, ASME 2019 Pressure Vessels and Piping Conference, 2019. PVP2019-93498.
24 A.S. Krausz, K. Krausz, Unified Constitutive Laws of Plastic Deformation, Academic Press, 1996, pp. 107-152.
25 P. Yu, W. Ma, A modified theta projection model for creep behavior of RPV steel 16MND5, J. Mater. Sci. Technol. 47 (2020) 231-242.   DOI
26 R. Pohja, S. Holmstrom, H.Y. Lee, Strain and Damage-Based Analytical Methods to Determine the Kachanov-Rabotnov Tertiary Creep-Damage Constants, Brown University, 2012.
27 J.M. Montes, F.G. Cuevas, J. Cintas, New creep law, Mater. Sci. Technol. 28 (2012) 377-379.   DOI