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The radionuclide inventory in radioactive waste from nuclear power plants should be determined to secure the safety of 
final repositories. As an alternative to time-consuming, labor-intensive, and destructive radiochemical analysis, the indirect 
scaling factor (SF) method has been used to determine the concentrations of difficult-to-measure radionuclides. Despite its 
long history, the original SF methodology remains almost unchanged and now needs to be improved for advanced SF im-
plementation. Intense public attention and interest have been strongly directed to the reliability of the procedures and data 
regarding repository safety since the first operation of the low- and intermediate-level radioactive waste disposal facility in 
Gyeongju, Korea. In this review, statistical methodologies for SF implementation are described and evaluated to achieve 
reasonable and advanced decision-making. The first part of this review begins with an overview of the current status of the 
scaling factor method and global experiences, including some specific statistical issues associated with SF implementation. 
In addition, this review aims to extend the applicability of SF to the characterization of large quantities of waste from the 
decommissioning of nuclear facilities.
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1. Introduction

Radioactive wastes are produced from a variety of in-
dustries, research institutes, and even academies. Effective 
isolation of the radioactive waste at safe and secure dispos-
al sites has been a key issue to ensure there is no harmful 
effect on public health and natural environment. Disposal 
methods for waste isolation are determined according to 
the class of radioactive wastes on the basis of the level of 
radioactivity, the extent of decay heat, and physicochemi-
cal characteristic features [1]. Each class of radioactive 
waste has its own maximum permissible activity concentra-
tion for the repository, and the individual radionuclides of 
interest present in each class of waste also have their own 
maximum permissible activity concentration [2-4]. The 
number and type of radionuclides, as well as the classifica-
tion of the waste, vary from country to country [5]. For ex-
ample, in Korea, the radioactive wastes are classified into 
high-level radioactive waste (HLW), intermediate-level ra-
dioactive waste (ILW), low-level radioactive waste (LLW), 
and very low-level radioactive waste (VLLW) [6] based the 
recommendation by International Atomic Energy Agency 
(IAEA) [7,8] and the permissible radioactivity concentra-
tions set by the Nuclear Safety and Security Commission 
(NSSC) of Korea [9]. The radioactivity concentrations of 
the 14 specified radionuclides should be identified for the 
disposal of radioactivates [10]. Accordingly, in practice, up 
to 31 radionuclides need to be identified for the final dis-
posal [11].

For the determination of radioactivity, various method-
ologies can be used depending on the type of decay mode. 
Gamma-ray-emitting radionuclides can be measured easily 
by direct non-destructive methods and are thus are called 
easy-to-measured (ETM) nuclides, whereas complex de-
structive radiochemical assays are usually used for alpha- 
and beta-ray-emitting radionuclides, including low-energy 
gamma-ray-emitting radionuclides, which are difficult to 
measure directly from the outside of the waste packages 
by non-destructive methods and thus are called difficult-to-

measure (DTM) or hard-to-measure (HTM) nuclides. Be-
cause destructive radiochemical assays are time-consuming 
and labor-intensive because of the long and complicated 
process of chemical sample pretreatment, radiochemi-
cal separation, and radiation detection, it is not practical 
for a large volume of waste in terms of cost-effectiveness, 
although the radiochemical method provides the most ac-
curate results. Thus, indirect methods such as the scal-
ing factor (SF) method, mean radioactivity concentration 
method, dose-to-curie conversion method, representative 
spectrum, and theoretical calculation methods (activation 
or burn-up) have been developed and applied around the 
world in industries, institutes, and academies. Among these 
techniques, the SF method has been used as the principal 
method because it provides the most reliable estimation of 
the radioactivity of DTM nuclides. The SF method predicts 
the radioactivity of DTM nuclides from the radioactivity 
of ETM nuclides measured by indirect methods through 
the correlation between the radioactivity of DTM nuclides 
and that of ETM nuclides (called key nuclides in the SF 
method) [12-21]. SF methods rely on statistical evalua-
tion because SF is a mathematical parameter derived from 
the correlation. Each country applies different statistical 
methods and guidelines to judge the applicability of the SF 
method and to determine the optimum SF values. Currently, 
there is only one international standard of the SF method 
set by the International Organization for Standardization 
(ISO) [21], but it is not sufficient for field practice owing 
to its lack of details. Because the statistical methods ap-
plied in the SF method are mostly limited to simple con-
ventional parametric statistical methods [20, 22, 23], there 
is ample opportunity to apply various statistical methods, 
such as nonparametric statistics, Bayesian statistics [24], 
and artificial intelligence [25], for the development of more 
advanced and more flexible implementation of SF methods. 
One good example of potential applications is the disposal 
of waste during decommissioning of nuclear power plants, 
which are expected to generate approximately 6,200 tons 
of potential ILLWs per 900-1,300 MWe pressurized water 
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reactor (PWR) [26]. A total of 6,200 tons of ILLWs cor-
responds to around 14,000 drums of waste. To dispose of 
such huge amounts of radioactive wastes, indirect methods 
such as the SF method must be introduced for the evaluation 
of radionuclide inventories [27]. Because the SF method 
has mostly been applied to nuclear power plant operational 
waste [20, 28-36], it is necessary to review the SF method to 
be applied for decommissioning wastes [37, 38]

In this review, the statistical methods and criteria ap-
plied in the SF method are described throughout the entire 
process of SF development from sampling to SF implemen-
tation. An overview of international experiences with SF de-
velopment and the usage of several major countries are also 
presented. Subsequently, some potential issues are derived 
from the perspective of international guidelines and statisti-
cal criteria. In the next issue, more in-depth investigation on 
potential issues mentioned here, including suggestions and 
directions as well as solutions.

2. Current status of SF methodologies

The most basic prerequisite assumption of the SF meth-
od is the existence of a correlation between DTM nuclides 
and key nuclides. SF is simply a factor or parameter derived 
from the mathematical relationship between them. A variety 
of mathematical models can be proposed from simple lin-
ear equations to complicated regression models. Although 
SF determination is a purely mathematical process, SF 
methodologies include many technical components, such 
as planning, analytical procedures, data management, and 
interpretation of the results. A representative flow diagram 
proposed by ISO [21] is a good guide for the understand-
ing of SF implementation, as shown in Fig. 1. The specific 
implementation details for SF methodologies differ from 
country depending on the policy of the national radioactive 
waste management, but the procedures can be categorized 
into four steps: (1) design of experiment, (2) sampling and 
radiochemical analysis, (3) evaluation of radiochemical data 

and SF applicability, and (4) determination of SF and the 
radioactivity of DTM nuclides. In this section, we review 
the current methodologies of each step in detail.

2.1 Design of experiment

In the design of the experiment, the first task is to iden-
tify the factors involved in the SF determination, as depicted 
in Fig. 1. Correlations between the radioactivity of DTM 
and key nuclides depend on various factors such as reactor 
type, reactor component materials, fuel history, production 
mechanism by which nuclides are generated, variations in 
reactor coolant chemistry, waste treatment, etc. [20]. These 
factors should be considered carefully when categorizing 
wastes into a group representing the average characteristics 
of the whole waste and cover the categorization of groups 

Fig. 1. Flow chart for the presentation of the systematic 
SF implementation recommended by ISO [21]. 

Copyright © by ISO. All Rights Reserved. Reprinted.
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of nuclear power plants, waste streams, and range of radio-
activity concentrations of wastes [20, 21]. SF is determined 
from the radiochemical data of representative samples, 
which are considered to possess the average characteristics 
of the waste packages.

The second most important topic in the experimental 
design is to determine the minimum required number (or 
size) of samples. Optimization of the entire SF determina-
tion process begins with the optimization of the number of 
samples subjected to radiochemical analysis to determine 
the radioactivity of DTM nuclides. Because the SF method 
relies on statistical evaluation, the accuracy of SF values 
depends on the number of radiochemical data, and there-
fore, a sufficient number of samples are required to ensure 
the reliability of the SF method, although the large quanti-
ties of samples result in a significant increase in the total 
cost. However, determination of the optimum sample size 
is not simple before sampling and radiochemical analysis. 
To the best of our knowledge, only one approach reported 
previously by Kashiwagi et al. considered the statistical 
decision criteria for the required number of samples based 
on the use of a lower confidence limit for the correlation 
coefficient [39, 40]. They proposed signs of leveling off 
the confidence limit values as a suitable decision criterion 
to determine the number of data instead of using only the 
correlation coefficient. For example, if the increase rate of 
the 95% confidence limit is less than 0.005, it is consid-
ered as a sign of leveling off. Based on this levelling-off 
criterion, the required number of data corresponding to the  

correlation coefficients is shown in Table 1. As seen in 
the table, higher correlation coefficients require a smaller 
amount of data. Nevertheless, decision making in relation 
to the required sample size requires extra care because the 
increase rate of the 95% confidence limit also strongly de-
pends on the variance of the data and other factors.

	
2.2 Sampling and radiochemical analysis

Appropriate sampling is essential to ensure accurate 
analysis of the samples. Two common practices for repre-
sentative sampling are homogenized sampling and accu-
mulated sampling. In homogenized sampling, wastes are 
sufficiently mixed before or during sampling to ensure that 
the radioactivity of the sample is uniformly distributed. Ho-
mogenized sampling endows sufficiently reliable SFs, even 
with a smaller number of samples. However, it may not be 
possible for large inhomogeneous samples to be homog-
enized. In such a case, a sufficient number of sub-samples 
should be collected to ensure the representativeness of an 
entire waste package through an accumulated sampling 
method. In the case of accumulated sampling, it is impor-
tant to obtain samples with a wide range of radioactivity 
concentrations to obtain effective correlations between the 
radioactivity of DTM nuclides and key nuclides.

After sampling, samples were transferred to radio-
chemical laboratories to perform complex destructive ra-
diochemical analysis for direct measurement. A tedious, 
time-consuming radiochemical analysis is needed to avoid 
interference from other nuclides and poor energy resolution 
due to high self-absorption [41]. It is necessary to ensure 
that radiochemical analysis is carried out in an appropriate 
manner in accordance with the characteristics of wastes and 
radionuclides to be analyzed for accurate correlations.

2.3 �Evaluation of radiochemical data and SF 
applicability

Radiochemical data should be evaluated carefully  

Correlation coefficient Required number of samples

0.60 40

0.70 35

0.80 30

0.90 25

0.95 20

Table 1. Required number of data corresponding to the specific correla-
tion coefficient values proposed by Kashiwagi et al. [39, 40]
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before the SF applicability is determined by applying statis-
tics. From a statistical perspective, only radiochemical data 
above the limit of detection (LOD) should be considered to 
determine the SF applicability and to determine SF. How-
ever, in some cases, lack of sufficient radiochemical data 
has no choice but to use the LOD value itself as the true ra-
dioactivity concentration [20, 42]. More specific case stud-
ies are described in Section 3. Decision making for the use 
of radiochemical data below LOD is required regarding the 
resampling and radiochemical reanalysis.

Outlier detection is also important in the evaluation of 
radiochemical data. Statistical methods can be applied to 
identify outliers in radiochemical data. One applied in the 
SF method is the ISO-approved Grubbs test [43, 44]. The 
Grubbs test is a test used to detect a single outlier in the 
data that follows a normal distribution. The hypothesis (H0, 
Hɑ) and test statistic (G) for the Grubbs test are defined as 
follows:

H0 : There are no outliers in the data set
Hɑ : There is exactly one outlier in the data set

	
G = s

max
i = 1,…,n | yi ₋y ̅  |

 		  (1)

where y  ̅  is the sample mean and s is the sample standard 
deviation. Another outlier verification for either one or 
more outliers was proposed by using the normalized fourth 
central moment [20], kurtosis, which is a measure of the 
“tailedness” or “peakedness” of the distribution. An out-
lier test based on kurtosis can be more powerful than the 
Grubbs test if the number of outliers is unknown [45]. If the 
cause of the outlier can be identified, the outlier should be 
corrected or removed. Otherwise, it should not be corrected 
or removed without careful consideration.

After evaluation of radiochemical data, the applicability 
of the SF method is determined by the correlation between 
DTM nuclides and key nuclides. The correlation is ob-
served in the scatter diagram using the radiochemical data. 
Previous studies on radiochemical data from nuclear power 

plants have shown that the radioactivity concentrations of 
both DTM nuclides and key nuclides follow a log-normal 
distribution with a wide range of radioactivity concentra-
tions over several orders of magnitude [20]. In Fig. 2, the 
characteristic scatter diagram of the simulated radiochemi-
cal data (200 points), which follow a log-normal distribu-
tion, are depicted on a linear scale and logarithmic scale. As 
seen in the figure, the correlation is clearer on a logarithmic 
scale.

The correlation is evaluated by the Pearson product-
moment correlation coefficient, which is a measure of 
linear correlation between two variables [46, 47]. Pear-
son’s correlation coefficient is the covariance of the two  

Fig. 2. Scatter plots of 200 random data points following a log-normal 
distribution as an example. All data generated using 

the random number generator function and the inverse of lognormal 
distribution function in Microsoft Excel are presented in 

linear scale (top) and logarithmic scale (bottom).
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variables divided by the product of their standard deviations. 
The population Pearson correlation coefficient (ρxy) and the 
sample Pearson correlation coefficient (rxy) are given by the 
following formulas:

ρxy = cov(x, y)
σxσy

	 (2)

rxy = ∑n
i =1(xi ₋x ̅ )(yi  ₋y ̅ )

∑n
i =1(xi  ₋x ̅ )2 ∑n

i =1(yi  ₋y ̅ )2
	 (3)

where cov(x, y) is the covariance, σx and σy are the popula-
tion standard deviations, n is the sample size, xi and yi are 
the individual sample points indexed with i, and x ̅  and y ̅   
are the sample means. The Pearson correlation coefficient 
has a value between +1 and ₋1 by the Cauchy-Schwarz in-
equality, and it reflects the strength of a linear relationship. 
The specific value of the Pearson correlation coefficient was 
used as a statistical criterion to determine the applicability 
of the SF method.

A statistical hypothesis test of the significance of the 
correlation coefficient was also used to decide whether the 
population correlation coefficient is significantly different 
from zero to determine SF applicability. For uncorrelated 
bivariate normal disturbed data, the hypotheses and test 
statistic (t ), which follows Student’s t-distribution with de-
grees of freedom n ₋ 2 (tn₋2), based on the sample correlation 
coefficient (r) and sample size (n) are defined as follows:

H0 : ρ = 0
Hɑ : ρ ≠ 0

t = r n ₋  2 
1 ₋  r 2

 ~ t n−2	 (4)

The coefficient of determination besides the Pearson 
correlation coefficient was used to test the applicability of 
SF method in the case of using linear regression model. The 
coefficient of determination is a goodness-of-fit measure in 
a regression model that determines the proportion of vari-
ance in the dependent variables that can be explained by the 
independent variables, defined as follows:

R2 = 1 − SSres

SStot
	 (5)

where SStot = ∑n
i =1 ( yi  ₋ y̅ )2 is the total sum of squares,  

SSres = ∑n
i =1 ( yi ₋ƒi )2 = ∑n

i =1 ri
2 is the residual sum of squares, 

and ƒi are the individual sample points indexed with i. The 
coefficient of determination has a value between 0 and 1. 
Although the coefficient of determination itself does not in-
dicate correlation, the value of the coefficient of determina-
tion was used as a statistical criterion for applicability of 
the SF method because it is equal to the square of the cor-
relation coefficient in the case of a simple linear regression.

If the correlation between DTM nuclides and key nu-
clides does not exist, the SF method cannot be applied. 
Then, the radiochemical data should be reviewed again 
with consideration of various factors that affect the correla-
tion. Nevertheless, if the correlation cannot be confirmed, 
other alternative approaches, such as the mean radioactiv-
ity concentration method, can be adopted instead of the SF 
method. Methodologies aside from the SF method are be-
yond the scope of this review and have been described in 
detail elsewhere.

2.4 �Determination of SF and the radioactivity 
of DTM nuclides

If the correlations are confirmed using an appropriate 
statistic, then the SF values are determined using mathe-
matical relationships. The linear relationship between the 
radioactivity concentration of the DTM nuclide (ɑD,i) and 
that of the key nuclide (ɑK,i) can be expressed by a simple 
linear equation as follows:

	
ɑD,i = SFi × ɑK,i	 (6)

SFi is a simple proportionality constant of the simple linear 
equation that passes through the origin. The representative 
SF (SF) is calculated using the arithmetic mean (AM) or 
geometric mean (GM) as follows:
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SFAM  = 
1
n  ∑

n

i =1
SFi = 

1
n  ∑ 

n

i =1

ɑD,i
ɑK,i

	 (7)

SFGM 
 = ( n

i =1
∏SFi )

1
n  =  log-1 ( 1

n  ∑
n

i =1
logSFi ) 

         
= log-1 ( 1

n  ∑
n

i =1
log 

ɑD,i
ɑK,i

 )	 (8)

The geometric mean is the nth root of the product of n num-
bers or anti-log of the arithmetic mean of log-transformed 
values. As mentioned before, the radioactivity concentra-
tion of DTM nuclides and key nuclides follows a log-nor-
mal distribution, the SF represented by their ratio is also 

known to follow the log-normal distribution [20, 28, 37, 39, 
48].

The log-normal distribution is the continuous prob-
ability distribution of a random variable whose logarithm 
is normally distributed, as depicted in Fig. 3, which shows 
the probability density of log-normal distribution in linear 
and logarithmic scales. The arithmetical mean is not the 
mode of the distribution because it is skewed. The geomet-
ric mean is the median of the log-normal distribution, and 
its logarithm is the mean of the normal distribution on a 
logarithmic scale [49].

Fig. 4 shows three characteristic features of the arithme-
tic mean and geometric mean for the evaluation of SFs [42]: 
(1) The arithmetic mean is always greater than or equal to 
the geometric mean by the inequality of arithmetic and geo-
metric means. (2) The predicted DTM concentration range 
of both arithmetic and geometric mean is more extended 
than the actual concentration range of DTM nuclides. (3) 
The predicted DTM concentration range of the arithmetic 
mean is shifted toward the higher concentration while that 
of geometric mean remains almost the same. These three 
features provide important underlying implications of the 
respective arithmetic and geometric means for the evalua-
tion of SFs: (1) The radioactivity concentration of DTM nu-
clides predicted by the geometric mean is underestimated in 
the low-concentration range, whereas that by the arithmeti-
cal mean is overestimated in the high-concentration range, 
depending on the correlation coefficient. (2) Underestima-
tion in the lower-concentration range has little impact on 
the estimated inventory of the disposal repository, whereas 
the overestimation in the higher-concentration range has 
a much greater impact. (3) Finally, the radioactivity con-
centration SF calculated by arithmetic mean always yields 
more conservative values, and the predicted concentration 
given by arithmetic mean is much more severely overesti-
mated in the higher-concentration ranges.

The relationship between the radioactivity concentra-
tion of DTM nuclides and key nuclides can be more gener-
alized based on the nonlinear relationship as follows:

Fig. 3. Probability density of log-normal distribution presented in linear 
scale (top) and logarithmic scale (bottom), together with arithmetic mean 
(AM), geometric mean (GM), and mode (M). The position of AM, GM, 

and M is represented by red, blue, and green solid lines, respectively, and 
the log-transformed of them are represented by dotted lines.
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ɑD,i = α(ɑK,i)β	 (9)

where α is the proportionality constant and β is the regres-
sion coefficient. In the special case where β equals 0, it be-
comes a simple linear equation, as mentioned above. If β is 
not equal to 0, this simple nonlinear model is a simple linear 
equation on a logarithmic scale.

y = β0 + β1x	 (10)

where y is log ɑD,i and x is log ɑK,i. Two parameters, the 
intercept (β0) and slope (β1), in the simple linear equation 
are generally estimated by the least-squares method. The 
least-squares method is a standard approach in regression 
analysis that minimizes the residual sum of squares. The 
estimated intercept (β  ̂0) and slope (β  ̂1) are given as follows:

β  ̂1 = 
∑n

i =1(xi ₋x ̅ )(yi ₋y ̅ )
∑n

i =1(xi ₋x ̅ )2
	 (11)

β  ̂0 = y ̅  ₋β  ̂1 x ̅ 	 (12)

A hypothesis test in simple linear regression can be 
performed to decide whether the parameter (βi) is signifi-
cantly different from the constant (βi

0). The hypotheses and 
test statistic (t ), which follows Student’s t-distribution with  

degrees of freedom n ₋ 2 (tn−2), are defined as follows:

H0 : βi = βi
0

Hɑ : βi ≠ βi
0

t = β  ̂i ₋βi
0

s(β  ̂ i)
  ~ tn−2	 (13)

Simple linear regression analysis on a logarithmic scale 
can minimize the under- and overestimation of radioac-
tivity concentration, as shown in Fig. 5, compared to the 
arithmetic and geometric mean techniques, but it is highly 
affected by outliers and does not match well outside of the 
range [20].

Two types of post-evaluation of SF have been reported 
in previous studies for comparison of SFs from different 
waste streams and periodic updates of SF. Various SFs ob-
tained from different waste streams can be compared to in-
tegrate or classify the SFs. A test to compare SFs is a popu-
lar two-sample t-test, which is performed to decide whether 
two SFs are significantly different. A statistical hypothesis 
test within the acceptable level of difference (D) can be per-
formed based on the pooled variance (sb

2) [20, 23]. The hy-
potheses and test statistic (t ) under the null hypothesis that 
follows Student’s t-distribution on a logarithmic scale with 
degrees of freedom n1 + n2 ₋2 (tn1+ n2

₋2) are defined as follows:

Fig. 5. Evaluation of SF determined using the arithmetic and geometric 
mean in comparison to linear regression in a log-log plot.
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Fig. 4. Evaluation of SF overestimation using the arithmetic mean in 
comparison with the geometric mean in a log-log plot.
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H0 : |SF1₋SF2 | = logD
Hɑ : |SF1₋SF2 | ≠ logD

t = 
 sb    

1 
n1

 + 1 
n2

 

|SF1₋SF2 | ₋  logD ~ t(n1+ n2- 2)	 (14)

sb
2 = (n1 ₋1) s1

2 + (n2 ₋1) s2
2 

n1 + n2 ₋2 	 (15)

where SF1 and SF2 are geometric means, n1 and n2 are the 
sample sizes, and s1

2 and s2
2 are the sample variances. D = 1 

means SF1 = SF2 because the values of SF are log-trans-
formed. Second, periodic updates of SF are to be consid-
ered. Periodic updating has been a critical issue to ensure 
the long-term stability of the SF values over time. The same 
hypothetical test as that used in the simple linear regression 
analysis was used to decide whether periodic updating is 
required by plotting SFs over time [20, 23, 40]. If the null 
hypothesis (H0 : β1 = 0, where β1 is the slope of the SF over 
time) is true, it is not necessary to update the SF because 
it cannot be said that the SF has changed over time, even 
though the slope of SF over time is not exactly zero. If not, 
the SF should be classified or updated, but the details are 
not well known.

3. �Global experiences of SF implementa-
tion

3.1 United States of America

Because the criterion for the radioactivity level of trans-
uranic (TRU) nuclides in low-level radioactive wastes was 
first offered to the land disposal facility [20, 23], the Electric 
Power Research Institute (EPRI) initiated an evaluation for 
radioactivity of TRU and other nuclides in 1976 [50]. They 
found a correlation between the radioactivity of 144Ce and 
that of 239Pu in the development of an indirect method to de-
termine TRU nuclide radioactivity. This was the first attempt 
ever reported regarding the SF method. The concept of SF 

was extended to other nuclides, such as beta- and low-energy 
gamma-emitting nuclides, as published in Title 10 of the 
US Code of Federal Regulation, Part 61 (10CFR61) by the 
United States Nuclear Regulatory Commission (US NRC) 
in 1982 [51]. According to the 10CFR61, the nuclear power 
plant operator should determine the activity concentration of 
14C, 60Co, 59Ni, 63Ni, 90Sr, 94Nb, 99Tc, 129I, and 137Cs, the half-
life of which is longer than five years. 10 CFR61 permits 
indirect approaches, such as the SF method, if the radioac-
tivity is difficult to measure directly. In 1985, after review-
ing the radiochemical analysis methods for DTM nuclides, 
EPRI performed radiochemical analysis on 680 samples of 
operational radioactive wastes from nuclear power plants to 
derive the correlation of radioactivity concentration between 
the nuclides [28]. In 1987, the number of samples was in-
creased to approximately 1,300 to update the US SF [29]. 
Subsequently, the SF calculation software RADSOURCE 
was developed with more than 3,000 samples by 1991 [23].

The US NRC and EPRI have led the SF guidance and 
implementation in the judgment of linear correlation, ac-
curacy of activity concentration, evaluation of SF, etc. The 
most important fundamental assumption of SF is the linear 
relationship between the activity concentration of DTM 
and key nuclides. Nevertheless, to the best of our knowl-
edge, the US has no critical Pearson correlation coefficient 
values that can be used as a decision criterion, so as to judge 
whether the geometric mean and SF method is applicable, 
whereas France and Japan have their own criterion for the 
correlation coefficient, as described in the following sec-
tions. On the other hand, the accuracy of SF and the ac-
tivity concentrations of DTM nuclides are the next critical 
concerns. In 1983, the US NRC’s branch technical posi-
tion (BTP) paper on radioactive waste classification recom-
mended the target accuracy of radioactivity concentrations 
to be within a factor of 10, although the specific details 
regarding this “factor of 10” were not sufficient to imple-
ment it in practice [52]. In 1992, the EPRI compensated 
for it with log-mean dispersion (LMD) based on the 2σ  
assumption (i.e., 95% confidence level) defined as follows 
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[53, 54]:

LMD(2σ) = log-1 (2 log sg )	 (16)

sg = log-1 (  n ₋1
∑n

i =1(log SFi ₋ log SFGM)2  )	 (17)

where sg is the sample geometric standard deviation. If 
LMD(2σ) is less than 10, then at least 95% of the total SFi 
data is expected to satisfy the following inequality, which 
is equivalent to the guideline regarding the accuracy toler-
ance of a factor of 10:

1 
10  SFGM ≤ SFi ≤ 10 SFGM or 1 

10  ɑD,i ≤ ɑ̂D,i ≤ 10ɑD,i	 (18)

where ɑ̂D,i = SFGM × ɑK,i is the inferred (i.e., calculated) ra-
dioactivity concentration and ɑD,i = SFi × ɑK,i is the mea-
sured radioactivity concentration.  

Although various SFs obtained over various timespans 
from an individual waste stream or mixtures of different 
waste streams have been evaluated for comparison of such 
SFs, they continuously assume that the SF data, that is, the 
radioactivity concentration ratio of DTM to key nuclides, 
follow a log-normal distribution based on their previous 
studies. On the basis of log-normality assumption, geomet-
ric means and log-mean dispersion have been used to make 
inferences about the average SF and the variance of SF, 
respectively, whereas the two-sample Student’s t-test with 
equal variance at the 95% confidence level was performed 
to identify the difference between the two arithmetic mean 
values from the log-transformed SF data, as described in 
detail in the previous section. The SF data are combined 
to create a representative common SF if the two log-
transformed geometric mean values from the two different 
groups of waste streams are not significantly different at 
the 95% confidence level. Unlike the accuracy criterion for 
the activity concentrations, there is no such “factor of 10” 
criterion in the evaluation of SFs obtained from different 
waste streams. In the case of temporal trend analysis, SFs 
were evaluated using a linear regression analysis. In the 

trend test, if the slope of the log-transformed SF vs. time 
in days curve is not significantly different from zero at the 
95% confidence level, as shown in Fig. 6 [23], the SF is 
considered to be constant, and the same SF is used con-
tinuously. Only a few samples for radiochemical analysis, 
that is, 6-7 samples per year, are used to evaluate the trend 
analysis [20]. 

Despite the danger of severe overestimation, it is no-
table that LODs as “true activity data” were used between 
2002 and 2012 for LILW based on US NRC guidance. 

3.2 France

Since 1989, the French Electric Power Corporation 
(EDF) has carried out two measurement campaigns. In the 
first campaign, sampling and radiochemical analysis were 
performed with 10 different nuclear power plants to de-
velop their own SF with the French Alternative Energies 
and Atomic Energy Commission (CEA). Before sufficient 
radiochemical data was available, from 1992 to 1995, EDF 
introduced the international SFs with the agreement of the 
French Nuclear Waste Agency (ANDRA) for evaluating six 
DTM nuclides (14C, 63Ni, 90Sr, 94Nb, 99Tc, and 129I) in the 
operational wastes, regardless of the type of waste. In 1995, 
the first French SFs were determined from approximately 

Fig. 6. US experience with various SFs obtained over various timespans 
for the use of constant 63Ni/60Co SF [23]. Copyright © by WM Symposia. 
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500 different results. Interestingly, the French concentra-
tions of SFs were not very different from those of the in-
ternational SFs implemented from 1992 to 1995, except for 
129I, whose values dropped dramatically. The second cam-
paign was carried out over the period 1995 to 1999 to in-
crease the number of samples and determine the SF for 99Tc, 
which was not determined in the first campaign. Overall, 
the French SFs were determined from over 1,000 different 
radiochemical analysis results.

France uses a least-squares linear regression analy-
sis. In the regression analysis fitted through the origin, as 
shown in Fig. 7, the “true activity” data above the LOD, 
from which outliers were removed using the Grubbs test, 
were adopted to determine the SF. Linear regression is 
applicable where the number of data points is equal to or 
greater than 5, and the coefficient of determination (R2) is 
equal to or greater than 0.7. In case of 0.5 ≤ R2 < 0.7, the 
geometric mean is used regardless of the amount of data, 
whereas an arithmetic mean is used when there are fewer 
than 5 data points or R2 is less than 0.5. It is an important 
criterion that the minimum required number of data is 5 in 
France, but it is unclear how this criterion is set. They used 
the same SFs for all the PWRs.

 
3.3 Germany

As in the case of France, only the data above the LOD 
are used to determine the SF because the activity concentra-
tion measured below the LOD is regarded as meaningless 
for statistical evaluation [31]. SF is calculated based on the 
following nonlinear equations between DTM nuclides and 
key nuclides with two parameters, the proportionality coef-
ficient (α) and the regression coefficient (β).

ɑD,i = α (ɑK,i)β	 (19)
ɑD,i,max = αmax (ɑK,i)β	 (20)

where αmax is defined as the maximum activity concentra-
tion (ɑD,i,max ) of a DTM nuclide. Two decision criteria for 
the applicability of the SF method exist: the correlation 
coefficient and the α ratio. If the correlation coefficient (r) 
is equal to or greater than 0.7, then the SF method is ap-
plicable. It is said that the SF method can be adopted even 
when 0.5 < r < 0.7 under special conditions. When the ratio 
of the maximum α value to the regression-derived α value 
is greater than 100, as shown in Fig. 8, the correlation is not 
sufficient due to the excessive variation of data; therefore, 

Fig. 7. A representative example of linear regression analysis through 
origin for the determination of 63Ni/60Co SF adopted in France [20]. 

The ordinary linear regression and the linear regression through 
the origin are represented by black and red lines, respectively. 

Copyright © by IAEA. All Rights Reserved. Reprinted.
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the SF method is not applicable.
 

3.4 Japan

Since 1992, homogeneous and solidified low-level 
radioactive wastes from nuclear power plants have been 
disposed of in Japan’s Rokkasho Low-Level Radioactive 
Waste Disposal Center, where 400,000 disposal drums are 
permitted. As of 2017, 300,000 drums were disposed of in 
this center.

In 1992, the SF method was approved by the Nuclear 
Safety Commission of Japan and has been proposed as a 
major radioactivity concentration-determination method. 
The radioactivity concentration of the waste was deter-
mined by four approved method, i.e., nondestructive assay, 
theoretical calculation, SF method, and mean radioactivity 
concentation method [55]. Interestingly, the radioactivity 
of DTM nuclides is determined by the SF method, except 
for 3H and 59Ni, which are determined by the theoretical 
calculation method and mean radioactivity concentration 
method, respectively. The mean radioactivity concentration 
method is used for 3H because it does not have any correla-
tions with key nuclides, whereas the theoretical calculation 
method is used for 59Ni because the production mechanism 
and transport behavior are the same as those of its isotope, 
63Ni.

It is worth noting that LOD values are regarded as true 
activity concentrations as of 2001 [20, 42]. For example, 
the radioactivity concentration of 137Cs, which is a key nu-
clide and an alpha-emitting fission product in DAW, is too 
low to detect, and consequently causes an overestimation 
of the activity concentration of DTM nuclides. However, 
the impact of overestimation is considered to be negligible 
compared to the concentration limit of the disposal facility. 
This is a distinctly different viewpoint from the aforemen-
tioned French and German experiences.

The applicability of the SF method is determined by 
performing a hypothetical test of the correlation coefficient, 
as described in detail in Section 2. The arithmetic mean is 

adopted for the SF calculation by the requirement of the 
regulatory authority, although the nuclear industry sectors 
in Japan recognize that the geometric mean is more appro-
priate. They use the generic SF, and the same SF is used if 
the new SF is not greater than 10 times the existing SF. To 
this end, annual sampling from every power plant is carried 
out for radiochemical analysis.

3.5 Korea

In Korea, the radioactivity concentration of 14 nuclides 
(3H, 14C, 55Fe, 58Co, 60Co, 59Ni, 63Ni, 90Sr, 94Nb, 99Tc, 129I, 
137Cs, 144Ce, and total alpha) should be identified to classify 
the waste for disposal [10]. SF values should be determined 
conservatively to ensure that the predicted radioactivity is 
not underestimated. From 2002 to 2005, the first campaign 
of extensive sampling and radiochemical analysis for 255 
samples from 13 different power plants was carried out to 
develop the first Korean SF [36, 56, 57]. The first Korean 
SFs were classified by reactor types, plant sites, and six 
types of waste forms: evaporator bottoms, primary spent 
resin, secondary spent resin, sludge, spent filter, and DAW. 
After two years, from 2007 to 2008, the second campaign 
was conducted to obtain 337 samples from 20 different 
plants to verify the first Korean SF and to compensate for 
the insufficient data for some nuclides [57]. To enhance the 
reliability of SF, the radiochemical data obtained from the 
first and second campaigns were unified and Korean SF 
was determined.

Both linear and nonlinear relationships are adopted to 
determine the SF such that if the correlation coefficient (r) 
is greater than 0.6, the linear regression on a logarithmic 
scale is used for calculating SF; otherwise, the geometric 
mean is adopted [58]. Although the criteria for the “factor 
of 10” in 10CFR61 are not clear, the concept of “factor of 
10” is applied. If the measured radioactivity concentration 
is more than 10 times greater than the predicted radioactiv-
ity concentration, or if the log-mean dispersion is greater 
than 10, it is considered to be underestimated and the SF is 
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multiplied by a conservative constant to produce a conser-
vative SF.

 

4. �Notable potential issues for the appro-
priate decision making and evaluation 
in relation to SF

Intense public attention and strict regulations focus on 
the reliability of the SF method since the first operation 
of the low- and intermediate-level radioactive waste dis-
posal facility in Gyeongju, Korea. The reliability of the 
methods, procedures, and data analysis is a typical main 
subject of quality management, such as quality control and 
quality assurance. Statistical quality control has been pro-
posed and introduced to many field processes, but it is not 
a strict or rigid system. Instead, it should be regarded as a 
toolbox to provide flexibility and rationality in any type of 
decision-making and interpretation. Many statistical tools 
have been developed and applied to various areas of sci-
ence and technology. The statistical toolbox can provide 
many alternatives. Nevertheless, current SF methodolo-
gies still rely strongly on old-fashioned statistics, such as 
Neyman-Pearson’s null hypothesis significance testing, 
which has some obvious vulnerabilities and shortcomings. 
Therefore, conventional SF methodologies with regard to 
statistics need to be much improved for advanced imple-
mentations in field practices. There have been some cases 
of misuse and abuse of statistical SF methodologies. In 
addition, licensees have been struggling with the lack of 
guidelines for important decisions and rational interpre-
tations of data, including practical implementations. The 
topics of the present review are limited to the issues in re-
lation to statistical decision-making and data evaluations. 
This section deals with the potential SF issues as examples 
regarding the lack of basic and fundamental guidelines 
briefly in relation to the statistics. Further details for each 
specific issue will be dealt with later, in separate upcoming 
review papers.  

4.1 �Lack of guidelines for the required sam-
ple size 

Determination of the required sample size should be 
carried out prior to performing the experiments. The num-
ber of samples influences the precision of the estimations 
and the power of the statistical tests. A smaller sample size 
may produce inconclusive results, whereas larger sample 
sizes generally lead to more precise estimation and higher 
statistical power, but dramatically increase the cost and 
time of the radiochemical analysis of DTM nuclides in the 
SF method. Although many statistical formulas are avail-
able, there is only one statistical criterion for sample size 
when it comes to the SF method, as mentioned in Sec-
tion 2.1, where it is based on the lower confidence limit 
of the proposed correlation coefficient [39, 40]. However, 
the required sample size also depends on the sample ho-
mogeneity and representative sampling, and therefore the 
determination of the required sample size has been one 
of the most difficult tasks in statistics [59, 60]. A large 
amount of inhomogeneous waste makes it more difficult 
to suggest specific guidelines for the required sample size. 
Moreover, if the calculated sample size is too large, the 
time to acquire a final SF for waste disposal will be too 
long to meet the licensees’ urgent needs. Thus, alternative 
solutions based on the common sense as reasonable crite-
ria, which are mutually comprehensible, should be given 
to both licensees and the public. For instance, an interim 
SF can be used until the finalized SF is obtained when the 
requirement for the number of data is fulfilled by exten-
sive radiochemical analysis. As mentioned in Section 3, 
France and Germany have suggested such interim SF val-
ues. France had used the US SF values and then replaced 
them with their own SFs later, after the time-consuming 
and labor-intensive radiochemical analyses were com-
pleted to collect enough data to determine their own SFs. 
After all, special care must be taken from the beginning to 
the end of SF implementation to avoid blind reliance on 
purely mathematical statistics. 
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4.2 �Lack of guidelines for the identification 
and treatment of outliers

Outliers are data points that differ significantly from 
others and can cause serious problems (i.e., increasing the 
variance of the data, reducing the normality of the data and 
the statistical power of the analysis) during statistical analy-
sis. As mentioned, with the SF method, the Pearson correla-
tion coefficient and the simple linear regression analysis are 
very sensitive to outliers, while the geometric mean is much 
less sensitive to outliers. However, it should be very careful 
to exclude outliers unconditionally from the data because 
they may not be due to experimental errors but simply ap-
pear as large variability of the samples, such as the homo-
geneity of the samples and the intrinsic large distribution of 
radioactivity concentrations throughout the samples. Some 
countries adopted the Grubbs test to reject outliers when 
developing SF. It should be noted that the Grubbs test is ap-
plicable if the population follows a normal distribution and 
can be used to test the single most extreme value. However, 
the test was not originally designed to be applied iteratively 
for the removal of multiple outliers [43]. Thus, alternative 
statistical methods should be provided, such as the identi-
fication of multiple outliers and/or distribution-free tech-
niques. A representative misuse of the Grubbs test is that it 
is used for the non-normal data. If it follows a non-normal 
distribution, even the data with extreme values come from 
the same population. As an educational instance, when the 
log-mean dispersion based on 2σ assumption equals 10 for 
the data with a log-normal distribution, at least ca. 5% of 
the total data points are different from the geometric mean 
more than by a factor of 10, which means that even 10 
times higher or lower numbers than the geometric mean 
value is not extreme. 

4.3 �Lack of guidelines for the data at concen-
tration below LOD

The guideline for the LOD is a tricky issue. Some DTM 

nuclides such as 99Tc and 129I in the waste are sometimes 
undetectable because they are present in very low concen-
trations in wastes such as decommissioning wastes and/or 
legacy wastes that have been collected and kept for years 
[54, 61]. Some countries, such as France and Germany, take 
into account true radioactivity concentration values only 
above the LOD, while others like Japan use the LOD values 
themselves as true radioactivity concentration values when 
the radioactivity is undetectable [20]. Pure statisticians and 
ordinary quality managers will not agree with the use of the 
LOD as true radioactivity concentration values. However, 
in a manner similar to that proposed in the previous section 
in this review, the use of the LOD value is an alternative so-
lution based on the conservative common sense. However, 
the estimation of the radioactivity concentration of DTM 
nuclides can be too conservative. In the case of decommis-
sioning wastes with extremely low concentrations of DTM 
nuclides, it may result in a serious problem in terms of the 
disposal facility’s capacity.

4.4 �Speculation on type-II errors and power 
analysis 

A statistical hypothesis test as a statistical inference is a 
method of making a decision that one of two contradictory 
claims is correct. The two contradictory claims are called 
the null hypothesis and alternative hypothesis. Two pos-
sible decisions are to reject null hypothesis or fail to reject 
the null hypothesis. The rejection of the null hypothesis 
means acceptance of the alternative hypothesis. However, 
failure to reject the null hypothesis does not mean the ac-
ceptance of the null hypothesis, which is a representative 
example of misused hypothesis-testing analysis. Another 
important factor in making a decision from the hypothesis 
test is the consideration of type-I and type-II errors. Despite 
the wide recognition of type-I errors, type-II errors have 
been ignored in SF implementations. However, besides 
type-I errors (α), type-II errors (β) are essential for reliable 
decision making. In the statistical hypothesis test to decide 
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whether to reject the null hypothesis, the correct decision is 
not to reject the null hypothesis when it is true and to reject 
it when it is false (or accept the alternative hypothesis). The 
rejection of a true null hypothesis and the non-rejection of 
a false null hypothesis are both incorrect decisions. A suit-
able range of critical α and β values as the decision criteria 
can be decided based on the agreement between stakehold-
ers. For example, the LOD increases when α or β decreases. 
The higher the α value, i.e., the incorrect detection decision, 
is more publicly acceptable as a conservative decision.

Statistical power (1-β) is an indicator of the capability 
of a significance test to recognize the difference between 
means of two data sets. A low power typically means that 
the sample sizes are insufficient. There are other types of 
statistical power analysis: criterion, post hoc, sensitiv-
ity, and a priori power analysis. The required α as a deci-
sion criterion is derived, provided that power (1-β), effect 
size, and sample size are given. In post hoc analysis, an 
achieved power is computed provided that α, the effect size, 
and the sample size are given, whereas the required effect 
size is computed in the sensitivity analysis provided that α, 
the power (1-β), and the sample size are given. In a priori 
power analysis, the required sample size before collecting 
the data can be derived using the input parameters such as 
the effect size, α, 1-β, and the allocation ratio. In case of a 
significance test to detect a difference between intercepts or 
slopes of linear regression, a priori power analysis uses the 
input parameters such as the absolute difference value of 
intercepts or slopes, α, 1-β, the allocation ratio, the square 
root of the weighted sum of the residual variances in the 
two data sets, and the standard deviation of the x-values 
in each data set so as to calculate the required sample size. 
In addition to these examples, the power analysis includes 
many statistical tests such as Fisher’s exact test, binomial 
test, goodness-of-fit test, generic chi-squared test, and lo-
gistic regression. 

4.5 �From conventional parametric statistics 
into more advanced data science 

A hypothesis test involving an estimation with the pa-
rameters of the probability distribution from the sample is 
called the parametric test based on the assumption that the 
population follows a specific probability distribution, such 
as a normal distribution. The statistical techniques imple-
mented in the SF method are mostly based on parametric 
statistics. A common basic assumption for radioactive 
wastes from nuclear power plants is that the radioactiv-
ity concentration population data of wastes follow a nor-
mal distribution on a logarithmic scale. Various normality 
tests, such as Anderson-Darling, Ryan-Joiner, Kologorov-
Smirnov, D’Agostino-Pearson, and Shapiro-Wilk, are used 
to check whether the parametric analyses can be performed. 
However, each normality test result is sometimes contra-
dictory to each other depending on the test methods. For ex-
ample, the same data set passes the Anderson-Darling test, 
but it does not pass the D’ Agostino-Pearson test. Unfortu-
nately, there is no objective selection rule that determines 
the optimal and best normality test for the radioactivity data 
set in the SF method.

One of the most popular topics in statistical analy-
ses is the t-test based on the normality assumption. In the 
SF method, the parametric t-test is applied to determine 
whether the correlation exists. It is also used to determine 
whether there is a significant difference between the mean 
SFs calculated using the data of different waste streams or 
the data collected at different periods of time. The para-
metric t-test is widely used for small-sample tests that it 
is quoted in general statistics textbooks, while the Z-test is 
used for the large-sample tests. However, the importance of 
the fundamental normality assumption is easily overlooked 
in the analyses using Student’s t-distribution under the null 
hypothesis. The Student’s t-distribution has its own prob-
ability density function, ƒ(t ), as follows:

ƒ(t ) = 
νπ Γ ( ν 

2 )
Γ ( ν + 1 

2 )
  (1+ t 2 

ν  )₋
ν + 1 

2 	
(21)

where ν is the degrees of freedom, and Γ is the gamma 
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function. The probability density function of the Student’s 
t-distribution is derived from the definition of the random 
variable T given by

T ≡ Z
V 
ν

	 (22)

where Z follows a standard normal distribution with a mean 
of 0 and a variance of 1, V follows a chi-squared distri-
bution with ν degrees of freedom, and Z and V are inde-
pendent. The probability density function of the Student’s 
t-distribution is the joint probability density function of Z 
and V, which follows the standard normal distribution and 
the chi-squared distribution, respectively. If the population 
does not follow the normal distribution, then the random 
variable T will follow an unknown distribution and will 
never follow the Student’s t-distribution. Finally, the nor-
mality test should also be performed prior to any t-tests. 
If the data set does not pass the normality tests, alterna-
tive nonparametric tests such as Wilcoxon, Mann-Whitney, 
Kruskal-Wallis, Mood’s median, and Friedman tests can be 
performed instead to test the population location.

Likewise, other statistical analyses such as the Pearson 
and Spearman correlation test, parametric regression analy-
sis, the Grubbs outlier test, and LOD based on the specified 
distribution with specified parameters should be used after 
the normality test. Thus, distribution-free nonparametric 
statistical techniques are attractive for achieving a robust 
analysis free from the effect of outliers and for solving 
problems with small sample sizes [62]. In general, para-
metric tests are preferred to compare nonparametric tests 
because of their higher statistical power, which is the prob-
ability that the test rejects the null hypothesis when a spe-
cific alternative hypothesis is true. However, nonparametric 
tests would be more appropriate when the sample size is 
small, when the distribution of population is unknown or 
cannot be assumed to have an approximately normal dis-
tribution. To the best of our knowledge, nonparametric sta-
tistical methodologies have never been applied to the SF 

method. Big data and data science are now heralding a new 
era for statistics in radioanalytical chemistry. It is expected 
that state-of-the-art statistical techniques such as Markov 
Chain Monte Carlo (MCMC) simulation, Bayesian statis-
tics, artificial intelligence, and chemometric analysis, will 
play an important role in more advanced and more flexible 
implementation of SF methods, so as to replace the current 
SF methodologies depending heavily on the parametric sta-
tistics and the correlation analysis of radioactivity concen-
tration between only two DTM and key nuclides.

5. Conclusions

The urgent need for the disposal of large quantities of 
radioactive wastes and upcoming decommissioning wastes 
has popularized the SF method as an efficient solution to 
the problems with the time-consuming and labor-intensive 
radiochemical analysis. We reviewed four categories of the 
methodologies in detail and the examples of SF implemen-
tation in four major countries: The United States, France, 
Germany, and Japan. The SF methodologies and imple-
mentations differ from country to country. Some of their 
methodologies are misused infield practice, and they are 
even contradictory to each other. Although there is an in-
ternational standard guideline, the level of detail is grossly 
insufficient to meet licensees’ and public needs for rational 
decision making.

In the long history of SF implementation, statistical 
thinking has played well throughout all over four catego-
ries of SF implementation processes: design of experiment, 
sampling and radiochemical analysis, evaluation of radio-
chemical data and SF applicability, and determination of SF 
and the radioactivity of DTM nuclides. Nevertheless, it still 
needs to be improved in response to the recent public atten-
tion and interest in the reliability of the procedures and data 
regarding radioactive wastes since the first operation of the 
low- and intermediate-level radioactive waste disposal fa-
cility in Gyeongju, Korea. Now, the nuclear industries are 
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struggling with the dilemma between cost-effectiveness and 
public acceptance. Statistical decision-making is a good so-
lution to this dilemma. Flexibility, rationality, and exact-
ness can be given with the help of a new face of statistics 
and data science, which are already popular and utilized in 
other areas of science and technology. Bayesian statistics, 
multivariate analysis, and distribution-free statistical tech-
niques are good examples of statistical decision-making.

As the new era of nuclear decommissioning begins, the 
development of a advanced concept of SF may be recom-
mended, and some statistical potential issues have been 
drawn in that context. This critical review is expected to 
be helpful for the development of advanced SF methodolo-
gies that can contribute to the realization of futuristic SFs. 
We proposed some potential issues to be considered: lack 
of guidelines for the required sample size, data treatment 
at concentrations below LOD, identification and treatment 
of outliers, problematic conventional parametric statistics, 
speculation on Type-II errors, and power analysis. In our 
subsequent review, the direction or solution of each specific 
issue will be discussed in detail based on various statisti-
cal approaches, not limiting to the issues mentioned in this 
review.
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