• Title/Summary/Keyword: atmospheric gas

Search Result 1,312, Processing Time 0.04 seconds

Numerical Analysis of Electro-Hydrodynamic (EHD) Flows in Electrostatic Precipitators using Open Source Computational Fluid Dynamics (CFD) Solver (오픈 소스 전산 유체 역학 해석 프로그램을 이용한 전기집진기 내부 정전 유동 해석)

  • Song, Dong Keun;Hong, Won Seok;Shin, Wanho;Kim, Han Seok
    • Particle and aerosol research
    • /
    • v.9 no.2
    • /
    • pp.103-110
    • /
    • 2013
  • The electrostatic precipitator (ESP) has been used for degrading atmospheric pollutants. These devices induce the electrical forces to facilitate the removal of particulate pollutants. The ions travel from the high voltage electrode to the grounded electrode by Coulomb force induced by the electric field when a high voltage is applied between two electrodes. The ions collide with gas molecules and exchange momentum with each other thus inducing fluid motion, electrohydrodynamic (EHD) flow. In this study, for the simulation of electric field and EHD flow in ESPs, an open source EHD solver, "espFoam", has been developed using open source CFD toolbox, OpenFOAM(R) (Open Field Operation and Manipulation). The electric potential distribution and ionic space charge density distribution were obtained with the developed solver, and validated with experimental results in the literature. The comparison results showed good agreement. Turbulence model is also incorporated to simulate turbulent flow; hence the developed solver can analyze laminar and turbulent flow. In distributions of electric potential and space charge, the distributions become distorted and asymmetric as the flow velocity increases. The effect of electrical drift flow was investigated for different flow velocities and the secondary flow in a flow of low velocity is successfully predicted.

Simulation Anaysis on the Output Characteristics of XeF$(C\rightarrowA$ Excimer Laser Pumped by Electron-Beam (전자빔여기 XeF$(C\rightarrowA$ 엑시머 레이저의 출력특성에 대한 시뮬레이션 해석)

  • 류한용;이주희
    • Korean Journal of Optics and Photonics
    • /
    • v.6 no.3
    • /
    • pp.201-213
    • /
    • 1995
  • By the use of computer simulation including collisional mixing kinetic processes of the B- and C-state in the upper laser level the output characteristics of electron-beam pumped XeF$(C\rightarrowA$ excimer laser are analyzed. We compared the results between experiments and simulations for the $XeF^*(C)$ formation that correlated the number of densities of the $XeF^*(B)$. We obtained good agreement$(28.5 mJ\pm5%)$ with comparisons between experiment and simulation and confirmed the optimal gas mixing ratio of $Xe/F_2/Ar=5.26/0.49/94.28%$ at atmospheric pressure laser medium under the condition of 70 ns [FWHM] electron-beam (800 kV, 21 kA). Also through the simulation we have investigated that the $XeF^*(C)$ formation channel, the $XeF^*(C)$ relaxation channel, and the absorption channel of bluegreen wavelength region as a function of F2 halogen donor and Xe partial pressure. ssure.

  • PDF

A Study for improving Decomposition Efficiency of Trichloroethylene using Atmospheric Plasma Reactor and Ozone Decomposing Catalyst (대기압플라즈마 및 오존 분해촉매를 이용한 트리클로로에틸렌의 분해효율 증진 연구)

  • Han, Sang-Bo;Park, Jae-Youn;Park, Sang-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.12
    • /
    • pp.142-149
    • /
    • 2008
  • This paper proposes an effective decomposition method of trichloroethylene using pellet packed-bed non-thermal plasma reactor and catalyst. For that, two types of reactors filled with manganese dioxide and alumina pellets are designed. When $MnO_2$ packed reactor is used, TCE decomposition rate is high due to the generation of oxygen atom radicals at the surface of catalyst during ozone decomposition. In addition, When $Al_2O_3$ packed reactor is used, TCE is oxidized into DCAC and it did not decomposed into small molecules such as COx and $Cl_2$. However, the plasma processed gas using $Al_2O_3$ packed reactor is passed through the $MnO_2$ catalyst reactor, which is placed at the downstream of plasma reactor, the decomposition rate increased as well due to oxygen atom radicals through ozone decomposition. Therefore, the adequate use of $MnO_2$ catalyst in the plasma process is very promising way to increase the decomposition efficiency.

Review of the Role of Land Surface in Global Climate Change (기후변화에서 지표환경의 역할에 대한 고찰)

  • Kim, Seong-Joong
    • The Korean Journal of Quaternary Research
    • /
    • v.23 no.1
    • /
    • pp.42-53
    • /
    • 2009
  • In response to the abrupt climate change in recent years, atmosphere, ocean and cryosphere are reported to be altered. In addition to these changes, the land surface is also gradually changing and its impact on the global climate may not be negligible. The land surface change impacts the global climate via two ways, the biogeochemical and biophysical feedbacks. The biogeochemcial change in the land surface modifies the atmospheric trace-gas concentrations through a change in photo synthesis, while biophycal changes of the land surface alters the surface albedo, which influences the amount of the short wave radiative heat fluxes. There are many examples in the past that the change in land surface greatly influences the global climate change. The recent IPCC report has suggested that the climate change will occur rather abrubtly in the near future. In order to predict the future climate accurately, the impact of the land surface change is fully considered.

  • PDF

Reduction and Decomposition of Hazardous NOx by Discharge Plasma with $TiO_2$ ($TiO_2$ 촉매를 이용한 플라즈마반응에 의한 NOx의 분해)

  • Park, Sung-Gug;Woo, In-Sung;Hwang, Myung-Whan
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.5
    • /
    • pp.54-60
    • /
    • 2008
  • The objective of this study is to obtain the optimal process condition and the maximum decomposition efficiency by measuring the decomposition efficiency, electricity consumption, and voltage in accordance with the change of the process variables such as the frequency, maintaining time period, concentration, electrode material, thickness of the electrode, the number of windings of the electrode, and added materials etc. of the harmful atmospheric contamination gases such as NO, $NO_2$, and $SO_2$ etc. with the plasma which is generated by the discharging of the specially designed and manufactured $TiO_2$ catalysis reactor and SPCP reactor. The decomposition efficiency of the NO, the standard samples, is obtained with the plasma which is being generated by the discharge of the combination effect of the $TiO_2$ catalysis reactor and SPCP reactor with the variation of those process variables such as the frequency of the high voltage generator($5{\sim}50kHz$), maintaining time of the harmful gases($1{\sim}10.5sec$), initial concentration($100{\sim}1,000ppm$), the material of the electrode(W, Cu, Al), the thickness of the electrode(1, 2, 3mm), the number of the windings of the electrode(7, 9, 11turns), basic gases($N_2$, $O_2$, air), and the simulated gas($CO_2$) and the resulting substances are analyzed by utilizing FT-IR & GC.

Optimized Decomposition of Ammonia Borane for Controlled Synthesis of Hexagonal Boron Nitride Using Chemical Vapor Deposition

  • Han, Jaehyu;Kwon, Heemin;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.285-285
    • /
    • 2013
  • Recently, hexagonal boron nitride (h-BN), which is III-V compound of boron and nitride by strong covalent sp2 bonds has gained great interests as a 2 dimensional insulating material since it has honeycomb structure with like graphene with very small lattice mismatch (1.7%). Unlike graphene that is semi-metallic, h-BN has large band gap up to 6 eV while providing outstanding properties such as high thermal conductivity, mechanical strength, and good chemical stability. Because of these excellent properties, hBN can potentially be used for variety of applications such as dielectric layer, deep UV optoelectronic device, and protective transparent substrate. Low pressure and atmospheric pressure chemical vapor deposition (LPCVD and APCVD) methods have been investigated to synthesize h-BN by using ammonia borane as a precursor. Ammonia borane decomposes to polyiminoborane (BHNH), hydrogen, and borazine. The produced borazine gas is a key material that is a used for the synthesis of h-BN, therefore controlling the condition of decomposed products from ammonia borane is very important. In this paper, we optimize the decomposition of ammonia borane by investigating temperature, amount of precursor, and other parameters to fabricate high quality monolayer h-BN. Synthesized h-BN is characterized by Raman spectroscopy and its absorbance is measured with UV spectrophotometer. Topological variations of the samples are analyzed by atomic force microscopy. Scanning electron microscopy and Scanning transmission Electron microscopy are used for imaging and analysis of structures and surface morphologies.

  • PDF

Emulsion Grafting of Glycidyl Methacrylate onto Plasma-treated Polypropylene Surface (플라즈마 처리된 폴리프로필렌 표면 위에 글리시딜메타크릴레이트의 에멀젼 그래프팅)

  • Ji, Han-Sol;Liu, Xuyan;Choi, Ho-Suk;Kim, Jae-Ha;Park, Han-Oh
    • Polymer(Korea)
    • /
    • v.36 no.1
    • /
    • pp.65-70
    • /
    • 2012
  • Glycidyl methacrylate (GMA) was used to introduce epoxy groups on the surface of polypropylene (PP) plate, used as a substrate, through plasma-induced graft copolymerization. Emulsion polymerization was applied for graft copolymerization of GMA and was compared with conventional solution polymerization to confirm its effect. Plasma treatment conditions under one atmospheric pressure were fixed as follows; the RF power of 200 W, the treatment time of 30 sec, the Ar gas flow rate of 6 LPM, and the exposure time of treated PP samples in air of 5 min. For graft-copolymerization, GMA concentration, reaction temperature, and reaction time was optimized to maximize the grafting degree of GMA. The maximum grafting degree of GMA was obtained at the condition of 12%-GMA concentration, $90^{\circ}C$ reaction temperature, and 5 hr-reaction time. Analysis results supported that the emulsion polymerization was more effective than the solution polymerization for grafting more GMAs on the surface of PP plate under the same reaction conditions.

Influence of Plasma Corrosion Resistance of Y2O3 Coated Parts by Cleaning Process (세정공정에 따른 Y2O3 코팅부품의 내플라즈마성 영향)

  • Kim, Minjoong;Shin, Jae-Soo;Yun, Ju-Young
    • Journal of Surface Science and Engineering
    • /
    • v.54 no.6
    • /
    • pp.365-370
    • /
    • 2021
  • In this research, we proceeded with research on plasma resistance of the cleaning process of APS(Atmospheric Plasma Spray)-Y2O3 coated parts used for semiconductor and display plasma process equipment. CF4, O2, and Ar mixed gas were used for the plasma environment, and respective alconox, surfactant, and piranha solution was used for the cleaning process. After APS-Y2O3 was exposed to CF4 plasma, the surface changed from Y2O3 to YF3 and a large amount of carbon was deposited. For this reason, the plasma corrosion resistance was lowered and contamination particles were generated. We performed a cleaning process to remove the defect-inducing surface YF3 layer and carbon layer. Among three cleaning solutions, the piranha cleaning process had the highest detergency and the alconox cleaning process had the lowest detergency. Such results could be confirmed through the etching amount, morphology, composition, and accumulated contamination particle analysis results. Piranha cleaning process showed the highest detergency, but due to the very large thickness reduction, the base metal was exposed and a large number of contaminated particles were generated. In contrast, the surfactant cleaning process exhibit excellent properties in terms of surface detergency, etching amount, and accumulated contamination particle analysis.

Research on Flow Analysis Program Development Considering Equilibrium Plasma Flow and Impulse Characterization of Sparkjet Actuator (플라즈마에 의한 평형 유동을 고려한 스파크제트 액츄에이터 유동 해석 프로그램 개발과 추력 특성 연구)

  • Kim, Hyung-Jin;Shin, Jin Young;Chae, Jeongheon;Ahn, Sangjun;Kim, Kyu Hong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.2
    • /
    • pp.90-97
    • /
    • 2019
  • Sparkjet actuator, also known as plasma synthetic jet actuator (PSJA), is an active flow control device that has possibility of controling supersonic flow. This actuator utilizes arc plasma to deposit energy onto the gas inside the cavity to raise temperature and pressure. A change in the state of the fluid inside the cavity generates pressure waves and momentum jet, and they are exhausted through out the orifice exit and disturb external flow field. Since the cavity flow is affected by arc plasma, which is an equilibrium plasma and have generated equilibrium flow, the equilibrium state of air should be considered in order to analyze the flow of sparkjet actuator. In this study, numerical program for equilibrium flow was developed for the use of sparkjet actuator analysis. The developed program was validated by comparing the time - accurate jet front positions with the reference result. Then, impulse characteristics of the actuator in the atmospheric quiescent air were explained.

A Review on the Carbon Exchange Estimation in Fruit Orchard (과수 재배지의 탄소 수지 평가 연구 동향)

  • Choi, Eun Jung;Suh, Sang Uk;Jeong, Hyun Cheol;Lee, Jong Sik;Kim, Gun Yeob;So, Kyu Ho
    • Journal of Climate Change Research
    • /
    • v.5 no.4
    • /
    • pp.339-348
    • /
    • 2014
  • Agro-ecosystem plays an important role in the mitigation of atmospheric $CO_2$ concentration through photosynthesis and soil carbon fixation. The perennial crops have capacity of carbon accumulation because they have lived for years in the same position. Carbon dioxide fixation occurs in the fruit orchard by photosynthesis and soil carbon sequestration. The objectives of this review are to introduce the fruit orchard as a carbon dioxide sink and to summarize the methods that measure $CO_2$ flux in the orchard. There are three difference methods (chamber, biomass, and eddy covariance method) to measure $CO_2$ exchanges on sites. However, there is no standard method suitable for fruit cultivation condition in Korea. Thus the standard method have to be developed in order to exactly estimate the carbon accumulation. In foreign studies, the carbon assessments were conducted in apple, peach, olive, grape orchard and so on. On the other hand the estimation of $CO_2$ exchange was carried out for apple and mandarine orchard in Korea. According to these results, fruit orchard is a $CO_2$ sink even though amount of carbon accumulation is smaller than the forest. To introduce certainly fruit orchard as greenhouse gas sink, long-term monitoring and further study have to be conducted under each planting condition.