DOI QR코드

DOI QR Code

A Study for improving Decomposition Efficiency of Trichloroethylene using Atmospheric Plasma Reactor and Ozone Decomposing Catalyst

대기압플라즈마 및 오존 분해촉매를 이용한 트리클로로에틸렌의 분해효율 증진 연구

  • 한상보 (경남대학교 전기공학과) ;
  • 박재윤 (경남대학교 공대 전기공학과) ;
  • 박상현 (경남대학교 공대 전기공학과)
  • Published : 2008.12.31

Abstract

This paper proposes an effective decomposition method of trichloroethylene using pellet packed-bed non-thermal plasma reactor and catalyst. For that, two types of reactors filled with manganese dioxide and alumina pellets are designed. When $MnO_2$ packed reactor is used, TCE decomposition rate is high due to the generation of oxygen atom radicals at the surface of catalyst during ozone decomposition. In addition, When $Al_2O_3$ packed reactor is used, TCE is oxidized into DCAC and it did not decomposed into small molecules such as COx and $Cl_2$. However, the plasma processed gas using $Al_2O_3$ packed reactor is passed through the $MnO_2$ catalyst reactor, which is placed at the downstream of plasma reactor, the decomposition rate increased as well due to oxygen atom radicals through ozone decomposition. Therefore, the adequate use of $MnO_2$ catalyst in the plasma process is very promising way to increase the decomposition efficiency.

본 논문은 비열평형 플라즈마와 촉매를 이용하여 트리클로로에틸렌의 효과적인 분해방법을 제안하였다. 이를 위하여 이산화망간과 알루미나 펠렛을 플라즈마 리액터 내부에 충진한 리액터를 설계하였다. 이산화망간 충진 리백터를 이용할 경우에는 산소를 포함한 가스중의 방전에 의해 발생된 오존이 촉매 표면에서 분해되는 동안에 발생된 산소원자 라디칼에 의하여 TCE의 분해율이 향상됨을 알 수 있었다. 그리고 알루미나를 충진한 경우에는 TCE DCAC로 산화되었으며, COx 및 $Cl_2$와 같은 저분자상으로 많이 분해되지 않았다. 그러나 알루미나 충진 리액터에 의한 플라즈마 처리된 가스를 리액터 후단에 설치한 이산화망간 촉매를 통과시킴에 의하여 분해율이 매우 향상됨을 알 수 있었다. 따라서, 플라즈마 프로세스에 이산화망간을 응용함에 의하여 오존 분해에 따른 촉매 표면의 산소원자 라디칼에 의하여 TCE 및 분해 생성물(DCAC)를 효율적으로 분해하는 것이 가능하다.

Keywords

References

  1. Shigeru Futamura, Toshiaki Yamamoto, "Byproducts Identification and Mechanism Determination in Plasma Chemical Decomposition of Trichloroethylene", IEEE Trans. Indus. App., Vol.33, No. 2 (1997) 447-453 https://doi.org/10.1109/28.568009
  2. Theodore Mill et al., "E-beam Treatment of Trichloroethylene-air mixtures: products and rates", Radiat. Phys. Chem. Vol. 50, No. 3 (1997) 283-291 https://doi.org/10.1016/S0969-806X(97)00031-5
  3. Baldur Eliasson, Ulrich Kogelschatz, "Nonequilibrium Volume Plasma Chemical Processing", IEEE Trans. Plasma sci., Vol.19, No. 6 (1991) 1063-1077 https://doi.org/10.1109/27.125031
  4. Toshiaki Yamamoto, "VOC Decomposition by Nonthermal Plasma Processing - A New Approach", J. Electros. 42 (1997) 227-238 https://doi.org/10.1016/S0304-3886(97)00144-7
  5. Tetsuji Oda, Tadashi Takahashi, and Shutaro Kohzuma, "Decomposition of dilute Trichloroethylene by Using Nonthermal Plasma Processing - Frequency and Catalyst Effects", IEEE Trans. Indus. App., Vol. 37, No. 4 (2001) 965-970 https://doi.org/10.1109/TIA.2001.936385
  6. Akira Mizuno et al. "Effect of Voltage Waveform on Partial Discharge in Ferroelectric Pellet Layer for Gas Cleaning", IEEE Trans. Indus. App., Vol. 29, No. 2 (1993) 262-267 https://doi.org/10.1109/28.216530
  7. S. Yagi and M. Tanaka, "Mechanism of ozone generation in air-fed ozonizers", J. Phys. D: Appl. Phys., Vol. 12 (1979) 1509-1520 https://doi.org/10.1088/0022-3727/12/9/013
  8. J. Kitayama and M Kuzumoto, "Analysis of ozone generation from air in silent discharge", J. Phys. D: Appl. Phys., Vol. 32 (1999) 3032-3040 https://doi.org/10.1088/0022-3727/32/23/309
  9. B. M. Penertrate, J. Norman Bardsley, "Kinetic Analysis of Non-Thermal Plasmas Used for Pollution Control", Jpn. J. Appl. Phys., Vol. 36 (1997) 5007-5017 https://doi.org/10.1143/JJAP.36.5007
  10. Seiichiro Imamura, Masaaki Ikebata, T. Ito, and T. Ogita, "Decomposition of Ozone on a silver Catalyst", Ind. Eng. Chem. Res. 1991, 30, 217-221 https://doi.org/10.1021/ie00049a033
  11. B. Dhandapani, and S. Ted Oyama, "Gas phase Ozone Decomposition catalyst", App. Catal. B, environ. 11 (1997) 129-166 https://doi.org/10.1016/S0926-3373(96)00044-6
  12. Teruyuki Hakoda, Shoji Hashimoto, and Takuji Kojima, "Effect of water and Oxygen contents on the Decomposition of Gaseous Trichloroethylene in Air under Electron Beam Irradiation", Bull. Chem. Soc. Jpn., 75 (2002) 2177-2183 https://doi.org/10.1246/bcsj.75.2177
  13. Hidahiro Einaga and Shigeru Futamura, "Comparative study on the catalytic activities of Alumina-supported metal oxides for oxidation of benzene and cyclohexane with ozone", React. Kinet. Catal. Lett.Vol. 81, No. 1 (2004) 121-128 https://doi.org/10.1023/B:REAC.0000016525.91158.c5
  14. R. Rudolph, K-P. Franke, and H. Miessner, "Concentration Dependence of VOC decomposition by Dielectric Barrier Discharges", Plas. Chem. And Plas. Process., Vol. 22, No. 3 (2002) 401-412
  15. Atsushi Ogata, Daisuke Ito, Koich Mizuno, "Effect of coexisting components on aromatic decomposition in a packed-bed plasma reactor", Appl. Catal. A, General 236 (2002) 9-15 https://doi.org/10.1016/S0926-860X(02)00280-6
  16. Kuniko Urashima, Jen-Shih Chang, "Removal of Volatile Organic Compounds from Air Streams and Industrial Flue Gases by Non-Thermal Plasma Technology", IEEE Trans. Dielec. and Electri. Insul., Vol.7, No. 5 (2000) 602-614 https://doi.org/10.1109/94.879356
  17. L. Bertrand et al., "The point of attack of a chlorine atom on trichloroethyle", J. Phy. Chem., (1968) 3926-3928
  18. Hidahiro Einaga and Shigeru Futamura, "Comparative study on the catalytic activities of Alumina-supported metal oxides for oxidation of benzene and cyclohexane with ozone", React. Kinet. Catal. Lett.Vol. 81, No. 1 (2004) 121-128 https://doi.org/10.1023/B:REAC.0000016525.91158.c5
  19. Sang-Bo Han, Tetsuji Oda, Jae-Youn Park, Sang-Hyun Park, and Hee-Seok Koh, "Study on Reactive Non-thermal Plasma Process combined with Metal Oxide Catalyst for Removal of Dilute Trichloroethylene", J. KIEEME, Vol. 19, No. 3, 2006, 292-300 https://doi.org/10.4313/JKEM.2006.19.3.292
  20. R. Hackam and H. Akiyama, "Air Pollution Control by Electrical Discharges", IEEE Trans. Dielec. Electri. Insul., Vol.7, No. 5 (2000) 654-683 https://doi.org/10.1109/94.879361