• Title/Summary/Keyword: asymptotic solution

Search Result 237, Processing Time 0.021 seconds

A Boundary-layer Stress Analysis of Laminated Composite Beams via a Computational Asymptotic Method and Papkovich-Fadle Eigenvector (전산점근해석기법과 고유벡터를 이용한 복합재료 보의 경계층 응력 해석)

  • Sin-Ho Kim;Jun-Sik Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.1
    • /
    • pp.41-47
    • /
    • 2024
  • This paper utilizes computational asymptotic analysis to compute the boundary layer solution for composite beams and validates the findings through a comparison with ANSYS results. The boundary layer solution, presented as a sum of the interior solution and pure boundary layer effects, necessitates a mathematically rigorous formalization for both interior and boundary layer aspects. Computational asymptotic analysis emerges as a robust technique for addressing such problems. However, the challenge lies in connecting the boundary layer and interior solutions. In this study, we systematically separate the principles of virtual work and the principles of Saint-Venant to tackle internal and boundary layer issues. The boundary layer solution is articulated by calculating the Papkovich-Fadle eigenfunctions, representing them as linear combinations of real and imaginary vectors. To address warping functions in the interior solutions, we employed a least squares method. The computed solutions exhibit excellent agreement with 2D finite element analysis results, both quantitatively and qualitatively. This validates the effectiveness and accuracy of the proposed approach in capturing the behavior of composite beams.

Analytical Asymptotic Solutions for Rectangular Laminated Composite Plates

  • Lee, Jae-Hun;Cho, Maeng-Hyo;Kim, Jun-Sik
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.2
    • /
    • pp.200-209
    • /
    • 2011
  • An analytical solution for rectangular laminated composite plates was obtained via a formal asymptotic method. From threedimensional static equilibrium equations, the microscopic one-dimensional and macroscopic two-dimensional equations were systematically derived by scaling of the thickness coordinate with respect to the characteristic length of the plate. The onedimensional through-the-thickness analysis was performed by applying a standard finite element method. The derived twodimensional plate equations, which take the form of recursive equations, were solved under sinusoidal loading with simplysupported boundary conditions. To demonstrate the validity and accuracy of the present method, various types of composite plates were studied, such as cross-ply, anti-symmetric angle-ply and sandwich plates. The results obtained were compared to those of the classical laminated plate theory, the first-order shear deformation theory and the three-dimensional elasticity. In the present analysis, the characteristic length of each composite was dependent upon the layup configurations, which affected the convergence rate of the method. The results shown herein are promising that it can serve as an efficient tool for the analysis and design of laminated composite plates.

AN ASYMPTOTIC FINITE ELEMENT METHOD FOR SINGULARLY PERTURBED HIGHER ORDER ORDINARY DIFFERENTIAL EQUATIONS OF CONVECTION-DIFFUSION TYPE WITH DISCONTINUOUS SOURCE TERM

  • Babu, A. Ramesh;Ramanujam, N.
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.5_6
    • /
    • pp.1057-1069
    • /
    • 2008
  • We consider singularly perturbed Boundary Value Problems (BVPs) for third and fourth order Ordinary Differential Equations(ODEs) of convection-diffusion type with discontinuous source term and a small positive parameter multiplying the highest derivative. Because of the type of Boundary Conditions(BCs) imposed on these equations these problems can be transformed into weakly coupled systems. In this system, the first equation does not have the small parameter but the second contains it. In this paper a computational method named as 'An asymptotic finite element method' for solving these systems is presented. In this method we first find an zero order asymptotic approximation to the solution and then the system is decoupled by replacing the first component of the solution by this approximation in the second equation. Then the second equation is independently solved by a fitted mesh Finite Element Method (FEM). Numerical experiments support our theoritical results.

  • PDF

Natural Frequencies and Mode Shapes of Beams with Step Change in Cross-Section

  • Kim, Yong-C.;Nam, Alexander V.
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.152-157
    • /
    • 2003
  • Natural frequencies of the transνerse vibration of beams with step change in cross-section are obtained by using the asymptotic closed form solution. This closed form solution is found by using WKB method under the assumption of slowly varying properties, such as mass, cross-section, tension etc., along the beam length. However, this solution is found to be still very accurate even in the case of large variation in cross-section and tension. Therefore, this result can be easily applied to many engineering problems.

  • PDF

ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO 3D CONVECTIVE BRINKMAN-FORCHHEIMER EQUATIONS WITH FINITE DELAYS

  • Le, Thi Thuy
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.3
    • /
    • pp.527-548
    • /
    • 2021
  • In this paper we prove the existence of global weak solutions, the exponential stability of a stationary solution and the existence of a global attractor for the three-dimensional convective Brinkman-Forchheimer equations with finite delay and fast growing nonlinearity in bounded domains with homogeneous Dirichlet boundary conditions.

AN ASYMPTOTIC INITIAL VALUE METHOD FOR SECOND ORDER SINGULAR PERTURBATION PROBLEMS OF CONVECTION-DIFFUSION TYPE WITH A DISCONTINUOUS SOURCE TERM

  • Valanarasu, T.;Ramanujam, N.
    • Journal of applied mathematics & informatics
    • /
    • v.23 no.1_2
    • /
    • pp.141-152
    • /
    • 2007
  • In this paper a numerical method is presented to solve singularly perturbed two points boundary value problems for second order ordinary differential equations consisting a discontinuous source term. First, in this method, an asymptotic expansion approximation of the solution of the boundary value problem is constructed using the basic ideas of a well known perturbation method WKB. Then some initial value problems and terminal value problems are constructed such that their solutions are the terms of this asymptotic expansion. These initial value problems are happened to be singularly perturbed problems and therefore fitted mesh method (Shishkin mesh) are used to solve these problems. Necessary error estimates are derived and examples provided to illustrate the method.

HIGH-ORDER POTENTIAL FLOW MODELS FOR HYDRODYNAMIC UNSTABLE INTERFACE

  • Sohn, Sung-Ik
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.16 no.4
    • /
    • pp.225-234
    • /
    • 2012
  • We present two high-order potential flow models for the evolution of the interface in the Rayleigh-Taylor instability in two dimensions. One is the source-flow model and the other is the Layzer-type model which is based on an analytic potential. The late-time asymptotic solution of the source-flow model for arbitrary density jump is obtained. The asymptotic bubble curvature is found to be independent to the density jump of the fluids. We also give the time-evolution solutions of the two models by integrating equations numerically. We show that the two high-order models give more accurate solutions for the bubble evolution than their low-order models, but the solution of the source-flow model agrees much better with the numerical solution than the Layzer model.

Derivation of an Asymptotic solution for a Perfect Conducting Wedge by Using the Dual Integral Equation, Part I : E-Polarized Plane Wave Incidence (쌍적분 방정식을 이용한 완전도체쐐기의 점근해 유도, I : E-분극된 평면파 입사시)

  • 하헌태;나정웅
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.12
    • /
    • pp.21-29
    • /
    • 1998
  • Dual integral equation in the spectral domain is derived for an arbitrary angled perfect conducting wedge with E-polarized plane wave incidence. Analytic integration of the dual integral equation in the spectral domain with the exact boundary fields of the perfect conducting wedge, the well known series solution, gives the exact asymptotic solution. The validity of the integration is assured by showing that analytic integration gives the null fields in the complementary region.

  • PDF

STABILITY OF POSITIVE STEADY-STATE SOLUTIONS IN A DELAYED LOTKA-VOLTERRA DIFFUSION SYSTEM

  • Yan, Xiang-Ping;Zhang, Cun-Hua
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.4
    • /
    • pp.715-731
    • /
    • 2012
  • This paper considers the stability of positive steady-state solutions bifurcating from the trivial solution in a delayed Lotka-Volterra two-species predator-prey diffusion system with a discrete delay and subject to the homogeneous Dirichlet boundary conditions on a general bounded open spatial domain with smooth boundary. The existence, uniqueness and asymptotic expressions of small positive steady-sate solutions bifurcating from the trivial solution are given by using the implicit function theorem. By regarding the time delay as the bifurcation parameter and analyzing in detail the eigenvalue problems of system at the positive steady-state solutions, the asymptotic stability of bifurcating steady-state solutions is studied. It is demonstrated that the bifurcating steady-state solutions are asymptotically stable when the delay is less than a certain critical value and is unstable when the delay is greater than this critical value and the system under consideration can undergo a Hopf bifurcation at the bifurcating steady-state solutions when the delay crosses through a sequence of critical values.