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ABSTRACT: Natural frequencies of the transverse vibration of beams with step change in cross-
section are obtained by using the asymptotic closed form solution. This closed form solution is found
by using WKB method under the assumption of slowly varying properties, such as mass, cross-section,
tension etc., along the beam length. However, this solution is found to be still very accurate even in
the case of large variation in cross-section and tension. Therefore, this result can be easily applied to

many engineering problems.

1 Introduction

Modern Industry extensively use beams with
variable properties in many structures and ma-
chineries for different purposes. The analytic so-
lutions for the transverse vibration of the Euler-
Bernoulli Beam with constant properties are well
known in the literature. However, the closed
form solutions for the variable properties along
it’s length, such as variable cross-section, tension,
mass etc., have not been available until the au-
thor [1] found asymptotic closed form solutions
by WKB method and published in the papers
(2, 3]. The validity of these solutions is based on
the assumption of slowly varying properties along
the beam length. However, these solutions were
found to be very accurate though the variation
of tension was large [2]. In the limit when the
variation goes to zero, these asymptotic solutions
become exact solutions.

In many papers [4, 5] to find natural frequen-
cies of beams with step changes in cross-section
subject to different boundary conditions, the an-
alytic solution for the constant cross-section in
each segment and compatibility conditions at the
junction points are used. Brief reviews on the

vibration of beams with step changes in cross-
section are as follows:

The frequency equation of a simply supported
stepped beam was deduced in [8] by Levinson.
Jang and Bert [9, 10] derived the frequency equa-
tions for all combinations of boundary condi-
tions in the form of fourth order determinant
equated to zero. The finite element method and
commercial code were used to obtain the nat-
ural frequencies of a beam with circular cross-
section. Naguleswaran presented a scheme to
derive frequency equation and obtain natural fre-
quencies and mode shape for all combinations of
the classical boundary conditions by using bisec-
tion method. The first three frequencies and sen-
sitivity of the frequency parameters were tabu-
lated for several combinations of system param-
eters. The results were extended for the beams
with up to three step changes in cross-section [5].

In the present paper the first three natural
frequencies of circular bipinned beam with one
step change in cross-section are tabulated for the
different beam parameters. The frequencies are
obtained by using the asymptotic closed form so-
lutions for the large variation case, such as step
change in cross-section. As a result these solu-
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tions are still found to be very accurate even for
the case of step change in cross-section and can be
easily applied to many beam vibration problems.

2 Asymptotic solution by
WKB method

The derivation of the asymptotic solutions by
using WKB method is described in details in [1]
and published in [2]. The governing equation and
the asymptotic solution for the transverse vibra-
Eicl)ln of the beam with variable properties are as
OlIOWS!

2w
at2

dx

(1)
By introducing the non-dimensional quantities
which are defined in Appendix A, the equation
becomes
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After the separation of variables Y (s,r)=R(s)H(r)
the equation (2) can be reduced to

a3)

H+A’H = @4

An asymptotic closed-form solution of the above
equation was obtained as follows

R(s) = Ty(s) [cl ain {/OS hzdf} i o {/os hzdg}]
+Ta(s) [ca stk {/OS hlde} + Oy ool {/os hld{}] :

(5)

where ¢,,0,,04,C4 are constants and R(s), s are
non-dimensional displacement and axial coordi-
nate, respectively, and Ti(s),Tz(s),h1(s),ha(s) are as-
sumed to be slowly varying quantities and defined
in the Appendix A. In order to find natural fre-
quencies of a beams, the following boundary con-
ditions can be considered.

3 Frequency equations and
Mode Shapes

3.1 Simply Supported Beams

The simply supported boundary conditions
are
R(0) = R”(0) = R(1) = R"(1) =0, (6)

where a prime denotes a derivative with respect
to s.

By substituting (6) into (5), the following
simple, asymptotic formulas to predict natural
frequencies and mode shapes of the beam can be
obtained:

[\

In dimensional form,

L
1/ T(x) 1 T(z) \2 m(z)w?
0/ \' "2 (E'I(a:)) L 5\/(Ej(z)) = El(x)
=mr; n=12:. (8)

Mode shapes are

ms):sm{ [-4® +;¢<g)2+4vg%ds}.
(9)

characteristic

Furthermore, the orthonormal
functions becomes

Pn(S) =
sin{f\/—% (%) i %\/(%)24»4%?1(13}
bfu(s)sinz{f\/;(%) +3 (3)2+4”T’}-2-ds} ds

(10)
3.2 Fixed-Fixed beams
The boundary conditions are -
R(0) = R'(0) = R(1) = R'(1) = 0. (11)

The natural frequencies and mode shapes in this
case can be obtained by solving
det Myy_jr =0 (12)

where matrix M is defined in the Appendix A.

3.3 Free-Free Beams

The corresponding boundary conditions are
given by

R’(0)=R"(0) = R"(1) = R"(1) =0.  (13)
Similarly, the characteristic equation becomes

det My, _jr =0 (14)
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Figure 1: The beam with one-step change in cross-section
3.4 Sliding-Sliding Beams The equation of motion is
The boundary conditions are 52 8%y a2y

R'(0) = R"(0) = R'(1) = R"'(1) = 0. (15)

The characteristic equation becomes

4 Natural

det Mgi—g =0

stepped beam

(16)

Frequencies of

The Euler-Bernoulli beam with one step
change in cross-section at z=AL is considered as
Fig. 1. The step location divides
the beam into two sections with flexural rigidi-
ties EI,,EI,, masses per unit length mq,my and
lengths AL,(1-))L, resr)ectively.

shown in

To find analytica.

expression for natural fre-

uencies the beam parameters are assumed to be
slow varying along the length. In case of step
change in cross-section the I1(z) and m(z) becomes
step functions

i x <
Ia) = {11, if0<z <AL,

I, fAL<z<

i an

(18)

mg, ifAL<z<L.

my, if0<az <AL,
m(z) =

After introducing non-dimensional quantities as
in Appendix, A the governing equation becomes

a2y
ot?

9? 8%y

5;5 (P(S)ﬁ) +U(8) =0 (20)
The non-dimensionalized frequencies a,,a2, flexu-
ral rigidity ratio . and mass per unit length ratio

u are defined as follows

o=t w?m, L4 - w?mg L4 _(u)l/da
V=Yg =Y e 14

EI;
=== 21
L= H (21)

my

m) '
After the separation of variables Y (s,t)=R(s)H(r),
asymptotic solution for R(s) is

Rls) = T [Cusin( [ h(€)de) + Cacos( " e)de)
+ Gy sink( /’ h(€)d€) + Ca cosh( /’ he)de)],  (22)
JO JO

where
A

_ 1 ] U(s)w% 4
T(s) = =0 {2 [4 Pls) } } (23)

Table 1: D function for the various combination of boundary conditions

D clamped (cl) pinned (pn) sliding (sl) free (fr)

cl 2 —2ByBy 2B1Bs — 2B3B3 | 2B;B3+ 2B1 By 2+4-2Bs By
pn 23233 = 2B1 B4 —4BlB3 —4BQB4 23134 == 232B3
sl | =2ByB3 — 2B1 B4 —4 B, By 4By B3 2By B3 + 2B1 By
fr 2+ 2By By 2B;B; — 2B1Bsy | —2B2B3 — 2B By 2 —2B4B,
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h(a) = (U}ffj;‘) b (24)

The detailed derivation can be found in [1]. To
obtain frequency equation, the boundary condi-
tions must be imposed, then general expression
(f)f frequency equation becomes in the following
orm.

T2(0)T%(1)h™(0)h™ (1)D(By, B2, B3, Bs) =0,  (25)

where D is a function of B;,B»,Bs,Bs. The form of
D depends on the combination of boundary condi-
tions. m and = are overall ranks of boundary con-
ditions. All possible combinations of boundary
conditions have been solved. The result is shown
in "l'able 1. In the case of simply supported beam
the equation (25) becomes

0 1 0 1

0 -1 0 1

T2(0)T?(1)h%(0)h%(1) B, Ba Bs B
—B1 —Bz Ba B4

= —T2%(0)T%(1)h%(0)h%(1)4B1B3 = 0. (26)

In general, terms 12(0),2%(1),h%(0),h*(1) are not
equal to zero. Hence the equation above is re-
duced to

disin ( /0 X h(E)d{) ik ( /0 . h(e)d{) =0, (7

or in dimensional form

./OL{%}itb::mr, =1 R s (28)

After solving the equation the analytical expres-
sion for natural frequencies becomes

nm
Wn = (—

L) ()\[

The integration has been done by using the fact
of jump in values of functions m(z),I(z) at step
location. The analytical expression for non-
?iﬁ\ensional frequency of first section is shown as
ollows

1

el [%]1/4)2'

(29)

¢

]l/4

s

I

nm

m, ‘ﬂ.=1,2,.... (30)

ay,, =

The ratio £ depends on type of the cross-section.
In the case of circular cross-section u=d? and iota=
d*, where d denotes the ratio between dimensions
of the first and second sections. Hence, equation
(30) becomes

Vd

oL SR e———————
- (Va-Dr+1

Note that d=1 or A=1 means no step change
in cross-section. In such cases (31) becomes
nw, exact natural frequencies for ordinary Euler-
Bernoulli bipinned beam without step change in

cross section.
The frequency a,, is the function of a,a, the
parameters of step change. The dependency fac-

tor «
__Vd
(Vd—1)A+1

carries the distortion due to step change. o is
increasing function with respect to d and x». «
is convex function with respect to ¢ and concave
with respect to A.

a(d, ) =

N2

I T
ad T ' Bd?

with property

<0, 0.

a(l,A) =afd, 1) =1.

To estimate the accuracy of the asymptotic
solution, the results are compared with the nu-
merical scheme suggested in [4] For the first three
natural frequencies a;, the error is less 5% when
d and A\ are close to 1. Error has tendency to
decrease when \ goes to one or zero.

The first three natural frequencies of the cir-

cular bipinned beam are tabulated in Tab. 2, 3, 4.

The frequencies for another types of cross sec-
tion can be found by using the same procedure.
However, only four combinations of the sliding
and pinned boundary conditions allows to obtain
analytical expression for natural frequencies in a
form of

an = f(n) ; =18
A+

(%)1/4 (1 = )\)‘»
where £ can be expressed in terms of d and de-
pends on type of cross-section.

5 Conclusions

The first three natural frequencies of circu-
lar bipinned beam with one step change in cross-
section are tabulated for the different beam pa-
rameters. The frequency equations for all combi-
nations of the boundary conditions were derived
and analytical expressions for frequencies for the
several boundary conditions have been obtained.
The frequencies were compared with exact values
which were calculated numerically. The error is
found to be very small for the step parameters
closed to unity. As a result, the asymptotic so-
lution is found to be very accurate even for the
case of step change in cross-section and can easily
applied to many beam vibration problem.
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A Appendix

The non-dimensional quantities are defined
by

s——:l3 T=uwet, wo= Bl
Bt =wot, wo = Mord'

where subscript ¢ denotes the reference section, A
is a characteristic length (e.g. the transverse wave
length) and D, is the effective diameter of the
beam (or the width of the beam). For simplicity
A is chosen to be equal to L. The non-dimensional
parameters are given by

_ EI(Ls) . T(Ls)L?
P(s) = “Eoly ' Q(s) = “Eolo
Bt} = m(Ls) P
R T
Ti(S) =

2 3/2 —1/4
+4ZA_}
i

T(S) =
1 [ 170\ _quar 1 (re\® wua2)¥?]
w—o[—a(;) T +5{(‘p) +4T} J
_ 3@y 1 e\, UA?
'“(S)“\]E(F>+E (;) L
e Ao @Y L AaNY | UAR
"““*\Ja(‘?)‘a (7] %
By = sin [y h(€)dE
By = cos [, h(€)dg
Bs = sinh [} h(€)dE
By = cosh [y h(€)d¢
Myz—z = :

0 T2(0) 0 T1(0)
T2(0)h2(0) 0 T1(0)h1 (0) 0
T2(1)B) T>(1)B2 Ti(1)B3 Ti(1)Ba
T2(1)Bzha(1) —T2(1)Bi1h2(1) Thi(1)Bshi(1) Ti(1)Bshi(1)
Myr—gr =

0 —T»(0)h%(0) 0 T1(0)R3(0)
~T3(0)43(0) 0 T3 (0)h3(0) 0
~T(Dh3(1)B1 —~Ta()A3(1)Bz  T1(1)h3(1)Bs B{A(1)By
~Tp(1)h3(1)Bz  Ta(DA3(1)B1  Ti(1)A3(1)Ba  Ti(1)h3(1)Bs
Msl—sl=
T2(0)h2(0) 0 T1(0)h1(0) 0
~T3(0)h3(0) 0 T1(0)h3(0) 0
Tp(1)Bzha(1)  —Ta(1)Birha(1) Ti(1)Bghi(1) Ti(1)Bshi(1)
~Tp(1)h3(1)B2  To(1)h3(1)B1  Ti(1)h3(1)Ba  Ti(1)h3(1)B3
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parameters

d=0.6

a=0.7

d= 0.8

d=10.9

A=0.1
A=10.2
A=03
A=04
A=0.5
A=0.6
A=07
A=038
A=09

2.48058 (2.43032)
2.54835 (2.41581)
2.60995 (2.40171)
2.67461 (2.41113)
2.74256 (2.46385)
2.81404 (2.57431)
2.88936 (2.74929)
2.96881 (2.96226)
3.05276 (3.11245)

2.67209 (2.62749)
2.71721 (2.62439)
2.76388 (2.628)
2.81218 (2.65253)
2.8622 (2.70984)
2.91403 (2.80532)
2.96777 (2.93169)
3.02354 (3.05632)
3.08143 (3.1287)

2.83991 (2.81015)
2.87054 (2.81307)
2.90183 (2.82505)
2.93382 (2.85321)
2.96652 (2:90175)
2.99995 (2.9688)
3.03415 (3.04321)
3.06914 (3.10486)
3.10494 (3.1363)

2.99575 (2.98093)
3.01128 (2.98491)
3.02698 (2.99575)
3.04284 (3.01548)
3.05886 (3.0436)
3.07506 (3.07642)
3.09143 (3.1074)
3.10797 (3.12964)
3.12469 (3.13994)

Table 2: First frequency, bracketed frequencies are obtained numerically

parameters

d=0.6

d=0.7

d=10.8

d=0.9

A=01
A=02
A=03
A=04
A=0.5
A=0.6
A=0.7
A=0.8
A=09

4.97917 (4.84919)
5.0967 (4.84702)
5.21991 (5.003)
5.34923 (5.33044)
5.48512 (5.70034)
5.62809 (5.79468)
5.77871 (5.64702)
5.93762 (5.67329)
6.10552 (6.09087)

5.34418 (5.25288)
5.43442 (5.2813)
5.52776 (5.42352)
5.62436 (5.66434)
5.7244 (5.86601)
5.82806 (5.87534)
5.93555 (5.81714)
6.04707 (5.92397)
6.16287 (6.19492)

5.67982 (5.62302)
5.74107 (5.66245)
5.80366 (5.77206)
5.86764 (5.91521)
5.93304 (5.99871)
5.99991 (5.99178)
6.06831 (5.99599)
6.13828 (6.10281)
6.20989 (6.24587)

5.9915 (5.96528)
6.02256 (5.99541)
6.05395 (6.05503)
6.08567 (6.11238)
6.11772 (6.13384)
6.15012 (6. 13308)
6.18285 (6.1561)
6.21594 (6.21677)
6.24938 (6.27117)

Table 3: Second frequency, bracketed frequencies are obtained numerically

parameters

d=10.6

d=0.7

d=0.8

d=0.9

A=041
A=102
A=03
A=04
A=0.5
A=0.6
A=0.7
A=038
A=09

7.46875 (7.26884)
7.64505 (7.43005)
7.82986 (7.89624)
8.02384 (8.24199)
8.22767 (8.06323)
8.44213 (8.31736)
8.66807 (8.9247)
8.90643 (8.80347)
9.15828 (8.97144)

8.01627 (7.88511)
8.15163 (8.04598)
8.29164 (8.38315)
8.43654 (8.51639)
8.5866 (8.45112)
8.74209 (8.74393)
8.90332 (9.03501)
9.07061 (8.95981)
9.2443 (9.19497)

8.51072 (8.44478)
8.61161 (8.57842)
8.7055 (8.77205)
8.80146 (8.80478)
8.89955 (8.82986)
8.99986 (9.0394)
9.10246 (9.14458)
9.20742 (9.13535)
9.31483 (9.32173)

8.98725 (8.9564)
9.03385 (9.03442)
9.08093 (9.10767)
9.12851 (9.11326)
9.17659 (9.15867)
9.22517 (9.25151)
9.27428 (9.27505)
9.32391 (9.29677)
9.37407 (9.38999)

Table 4: Third frequency, bracketed frequencies are obtained numerically
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