• 제목/요약/키워드: asymptotic boundary

검색결과 130건 처리시간 0.02초

STABILITY OF POSITIVE STEADY-STATE SOLUTIONS IN A DELAYED LOTKA-VOLTERRA DIFFUSION SYSTEM

  • Yan, Xiang-Ping;Zhang, Cun-Hua
    • 대한수학회지
    • /
    • 제49권4호
    • /
    • pp.715-731
    • /
    • 2012
  • This paper considers the stability of positive steady-state solutions bifurcating from the trivial solution in a delayed Lotka-Volterra two-species predator-prey diffusion system with a discrete delay and subject to the homogeneous Dirichlet boundary conditions on a general bounded open spatial domain with smooth boundary. The existence, uniqueness and asymptotic expressions of small positive steady-sate solutions bifurcating from the trivial solution are given by using the implicit function theorem. By regarding the time delay as the bifurcation parameter and analyzing in detail the eigenvalue problems of system at the positive steady-state solutions, the asymptotic stability of bifurcating steady-state solutions is studied. It is demonstrated that the bifurcating steady-state solutions are asymptotically stable when the delay is less than a certain critical value and is unstable when the delay is greater than this critical value and the system under consideration can undergo a Hopf bifurcation at the bifurcating steady-state solutions when the delay crosses through a sequence of critical values.

A 3D RVE model with periodic boundary conditions to estimate mechanical properties of composites

  • Taheri-Behrooz, Fathollah;Pourahmadi, Emad
    • Structural Engineering and Mechanics
    • /
    • 제72권6호
    • /
    • pp.713-722
    • /
    • 2019
  • Micromechanics is a technique for the analysis of composites or heterogeneous materials which focuses on the components of the intended structure. Each one of the components can exhibit isotropic behavior, but the microstructure characteristics of the heterogeneous material result in the anisotropic behavior of the structure. In this research, the general mechanical properties of a 3D anisotropic and heterogeneous Representative Volume Element (RVE), have been determined by applying periodic boundary conditions (PBCs), using the Asymptotic Homogenization Theory (AHT) and strain energy. In order to use the homogenization theory and apply the periodic boundary conditions, the ABAQUS scripting interface (ASI) has been used along with the Python programming language. The results have been compared with those of the Homogeneous Boundary Conditions method, which leads to an overestimation of the effective mechanical properties. According to the results, applying homogenous boundary conditions results in a 33% and 13% increase in the shear moduli G23 and G12, respectively. In polymeric composites, the fibers have linear and brittle behavior, while the resin exhibits a non-linear behavior. Therefore, the nonlinear effects of resin on the mechanical properties of the composite material is studied using a user-defined subroutine in Fortran (USDFLD). The non-linear shear stress-strain behavior of unidirectional composite laminates has been obtained. Results indicate that at arbitrary constant stress as 80 MPa in-plane shear modulus, G12, experienced a 47%, 41% and 31% reduction at the fiber volume fraction of 30%, 50% and 70%, compared to the linear assumption. The results of this study are in good agreement with the analytical and experimental results available in the literature.

NUMERICAL INTEGRATION METHOD FOR SINGULAR PERTURBATION PROBLEMS WITH MIXED BOUNDARY CONDITIONS

  • Andargie, Awoke;Reddy, Y.N.
    • Journal of applied mathematics & informatics
    • /
    • 제26권5_6호
    • /
    • pp.1273-1287
    • /
    • 2008
  • In this paper, the numerical integration method for general singularly perturbed two point boundary value problems with mixed boundary conditions of both left and right end boundary layer is presented. The original second order differential equation is replaced by an approximate first order differential equation with a small deviating argument. By using the trapezoidal formula we obtain a three term recurrence relation, which is solved using Thomas Algorithm. To demonstrate the applicability of the method, we have solved four linear (two left and two right end boundary layer) and one nonlinear problems. From the results, it is observed that the present method approximates the exact or the asymptotic expansion solution very well.

  • PDF

수압파쇄균열의 점근적 해석과 경계병치법의 적용성 (Asymptotic Analysis for Hydraulic Fractures and Applicability of Boundary Collocation Method)

  • 심영종;김홍택
    • 한국지반공학회논문집
    • /
    • 제21권6호
    • /
    • pp.93-100
    • /
    • 2005
  • 수압파쇄시 다중으로 분할된 균열의 생성은 자주 발생되는 현상이며 이러한 균열군은 단균열과는 달리 상당히 다른 거동을 나타낸다. 그러나 대부분의 수치기법으로는 이러한 균열군 거동의 모사는 계산량의 증가로 결코 쉽지 않다. 따라서 본 논문에서는 수압파쇄시 생성되는 다수의 균열 변위를 경계병치법을 사용하여 효과적으로 계산하기 위한 방법을 제시하였다. 우선 평행하면서 아주 가깝게 위치한 다중 분할 균열의 점근적 해를 구하고 경계병치법의 균열에 사용된 병치점의 수를 변화시켜 점근적 해와 비교하였다. 그 결과 기존의 기준에 비해 병치점의 수를 10배정도 줄이더라도 얻어지는 결과에는 별 차이가 없음을 밝혀냈다. 따라서 이보다 더욱 복잡한 균열이 존재하는 실제의 경우 병치점의 수를 줄여 적용하여도 경계병치법에 의한 계산은 유효하다는 결론을 얻었다.

THE OSEEN-TYPE EXPANSION OF NAVIER-STOKER FLOWS WITH AN APPLICATION TO SWIMMING VELOCITY

  • Kim, Sun-Chul
    • 대한수학회보
    • /
    • 제38권2호
    • /
    • pp.337-346
    • /
    • 2001
  • A linearization owing to Oseen originally is performed to study the recirculating Navier-Stokes flows at high Reynolds numbers. The procedure is generalized to produce higher order asymptotic expansion for the flow velocity. We call this the Oseen-type expansion of the given flow. As a concrete example, the velocity of a steady Navier-Stockes flow due to a swimming flexible sheet in two-dimensional infinite strip domain is calculated by an asymptotic expansion technic with two-parameters, the Reynolds number R and the perturbation parameter $\varepsilon$ first and then R secondly. The asymptotic result is up to second order in $\varepsilon$.

  • PDF

쌍적분 방정식을 이용한 완전도체쐐기의 점근해 유도, II : H-분극된 평면파 입사시 (Derivation of an Asymptotic solution for a Perfect Conducting Wedge by Using the Dual Integral Equation, Part II : H-Polarized Plane Wave Incidence)

  • 하헌태;나정웅
    • 전자공학회논문지D
    • /
    • 제36D권1호
    • /
    • pp.22-28
    • /
    • 1999
  • H-분극된 평면파가 입사되는 완전도체쇄기에 대해 급수형태의 정확한 경계면 전자파를 파수영억역에서의 쌍적분 방정식에 대힙하여 해석적으로 적분함으로써 검근해를 유도하였다. 가상공간에서 적분 결과가 0이 되는 것을 보임으로써 적분 과정의 타당성을 보였다. 완전도체쇄기의 점근해 유도과정에 쌍적분 방정식을 이동함으로써 얻은 잇점에 대해 살펴보았다.

  • PDF

Snap-through buckling of single-layer squarely-reticulated shallow spherical shells continuously supported on springs

  • Nie, G.H.
    • Structural Engineering and Mechanics
    • /
    • 제10권2호
    • /
    • pp.111-123
    • /
    • 2000
  • An asymptotic solution for snap-through buckling of single-layer squarely-reticulated shallow spherical shells continuously supported on springs is developed in this paper. Based on the fundamental governing equations and boundary conditions, a nondimensional analytical expression associated with the external load, stiffness of spring and central transverse displacement (deflection) is derived with the aid of asymptotic iteration method. The effects of stiffness of spring and characteristic geometrical parameter on buckling of the structures are given by the analyses of numerical examples. In a special case, for reticulated circular plates, the influence of stiffness of spring on the characteristic relation between load and deflection is also demonstrated.

NUMERICAL METHOD FOR SINGULAR PERTURBATION PROBLEMS ARISING IN CHEMICAL REACTOR THEORY

  • Andargie, Awoke
    • Journal of applied mathematics & informatics
    • /
    • 제28권1_2호
    • /
    • pp.411-423
    • /
    • 2010
  • In this paper, a numerical method for singular perturbation problems arising in chemical reactor theory for general singularly perturbed two point boundary value problems with boundary layer at one end(left or right) of the underlying interval is presented. The original second order differential equation is replaced by an approximate first order differential equation with a small deviating argument. By using the trapezoidal formula we obtain a three term recurrence relation, which is solved using Thomas Algorithm. To demonstrate the applicability of the method, we have solved four linear (two left and two right end boundary layer) and one nonlinear problems. From the results, it is observed that the present method approximates the exact or the asymptotic expansion solution very well.

Analytical Asymptotic Solutions for Rectangular Laminated Composite Plates

  • Lee, Jae-Hun;Cho, Maeng-Hyo;Kim, Jun-Sik
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제12권2호
    • /
    • pp.200-209
    • /
    • 2011
  • An analytical solution for rectangular laminated composite plates was obtained via a formal asymptotic method. From threedimensional static equilibrium equations, the microscopic one-dimensional and macroscopic two-dimensional equations were systematically derived by scaling of the thickness coordinate with respect to the characteristic length of the plate. The onedimensional through-the-thickness analysis was performed by applying a standard finite element method. The derived twodimensional plate equations, which take the form of recursive equations, were solved under sinusoidal loading with simplysupported boundary conditions. To demonstrate the validity and accuracy of the present method, various types of composite plates were studied, such as cross-ply, anti-symmetric angle-ply and sandwich plates. The results obtained were compared to those of the classical laminated plate theory, the first-order shear deformation theory and the three-dimensional elasticity. In the present analysis, the characteristic length of each composite was dependent upon the layup configurations, which affected the convergence rate of the method. The results shown herein are promising that it can serve as an efficient tool for the analysis and design of laminated composite plates.