• Title/Summary/Keyword: asymptotic

Search Result 2,058, Processing Time 0.026 seconds

On Copas′ Local Likelihood Density Estimator

  • Kim, W.C.;Park, B.U.;Kim, Y.G.
    • Journal of the Korean Statistical Society
    • /
    • v.30 no.1
    • /
    • pp.77-87
    • /
    • 2001
  • Some asymptotic results on the local likelihood density estimator of Copas(1995) are derived when the locally parametric model has several parameters. It turns out that it has the same asymptotic mean squared error as that of Hjort and Jones(1996).

  • PDF

ASYMPTOTIC EQUIVALENCE IN VARIATION BETWEEN NONLINEAR DIFFERENTIAL SYSTEMS

  • Song, Se-Mok
    • Journal of applied mathematics & informatics
    • /
    • v.12 no.1_2
    • /
    • pp.429-436
    • /
    • 2003
  • We study the asymptotic equivalence between the nonlinear differential system $\chi$'(t) = f(t, $\chi$(t)) and its variational system ν'(t) = f$\chi$(t, 0)ν(t) by using the comparison principle and notion of strong stability.

On Asymptotic Property of Matheron′s Spatial Variogram Estimators

  • Lee, Yoon-Dong;Lee, Eun-Kyung
    • Journal of the Korean Statistical Society
    • /
    • v.30 no.4
    • /
    • pp.573-583
    • /
    • 2001
  • A condition in which the covariances of Matheron's variogram estimators are expressed in a simple form is reviewed. An asymptotic property of the covariances of the variogram estimators is examined, and a sufficient condition that guaranties the finiteness of the asymptotic variance of the normalized variogram estimators is provided.

  • PDF

On asymptotic Stability in nonlinear differential system

  • An, Jeong-Hyang
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.11 no.5
    • /
    • pp.62-66
    • /
    • 2006
  • We investigate various $\Phi(t)-stability$ of comparison differential equations and we abtain necessary and/or sufficient conditions for the uniform asymptotic and exponential asymptotic stability of the nonlinear differential equation x'=f(t, x).

  • PDF

Backstepping and Partial Asymptotic Stabilization: Applications to Partial Attitude Control

  • Jammazi, Chaker
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.6
    • /
    • pp.859-872
    • /
    • 2008
  • In this paper, the problem of partial asymptotic stabilization of nonlinear control cascaded systems with integrators is considered. Unfortunately, many controllable control systems present an anomaly, which is the non complete stabilization via continuous pure-state feedback. This is due to Brockett necessary condition. In order to cope with this difficulty we propose in this work the partial asymptotic stabilization. For a given motion of a dynamical system, say x(t,$x_0,t_0$)=(y(t,$y_0,t_0$),z(t,$z_0,t_0$)), the partial stabilization is the qualitative behavior of the y-component of the motion(i.e., the asymptotic stabilization of the motion with respect to y) and the z-component converges, relative to the initial vector x($t_0$)=$x_0$=($y_0,z_0$). In this work we present new results for the adding integrators for partial asymptotic stabilization. Two applications are given to illustrate our theoretical result. The first problem treated is the partial attitude control of the rigid spacecraft with two controls. The second problem treated is the partial orientation of the underactuated ship.

Asymptotic cell loss decreasing rate in an ATM multiplexer loaded with heterogeneous on-off sources

  • Choi, Woo-Yong;Jun, Chi-Hyuck
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.543-546
    • /
    • 1996
  • Recently, some research has been done to analyze the asymptotic behavior of queue length distribution in ATM (Asynchronous Transfer Mode) multiplexer. In this paper, we relate this asymptotic behavior with the asymptotic behavior of decreasing cell loss probability when the buffer capacity is increased. We find with reasonable assumptions that the asymptotic rate of queue length distribution is the same as that of decreasing cell loss probability. Even under different priority control schemes and traffic classes, we find that this asymptotic rate of the individual cell loss probability of each traffic class does not change. As a consequence, we propose the upper bound of cell loss probability of each traffic class when a priority control scheme is employed. This bound is computationally feasible in a real-time. The numerical examples will be provided to validate this finding.

  • PDF