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LIPSCHITZ AND ASYMPTOTIC STABILITY FOR

NONLINEAR PERTURBED DIFFERENTIAL SYSTEMS

Sang Il Choi* and Yoon Hoe Goo**

Abstract. In this paper, we investigate Lipschitz and asymptotic
stability for nonlinear perturbed differential systems.

1. Introduction

The notion of uniformly Lipschitz stability (ULS) was introduced
by Dannan and Elaydi [9] . This notion of ULS lies somewhere between
uniformly stability on one side and the notions of asymptotic stability
in variation of Brauer[4] and uniformly stability in variation of Brauer
and Strauss[3] on the other side. An important feature of ULS is that
for linear systems, the notion of uniformly Lipschitz stability and that
of uniformly stability are equivalent. However, for nonlinear systems,
the two notions are quite distinct. Furthermore, uniform Lipshitz sta-
bility neither implies asymptotic stability nor is it implied by it. Also,
Elaydi and Farran[10] introduced the notion of exponential asymptotic
stability(EAS) which is a stronger notion than that of ULS. They in-
vestigated some analytic criteria for an autonomous differential system
and its perturbed systems to be EAS. Gonzalez and Pinto[11] proved
theorems which relate the asymptotic behavior and boundedness of the
solutions of nonlinear differential systems.

The purpose of this paper is to employ the theory of integral in-
equalities to study Lipschitz and asymptotic stability for solutions of
the nonlinear differential systems. The method incorporating integral
inequalities takes an important place among the methods developed for

Received July 09, 2014; Revised July 28, 2014; Accepted October 06, 2014.
2010 Mathematics Subject Classification: Primary 34D10.
Key words and phrases: uniformly Lipschitz stability, uniformly Lipschitz stability

in variation, exponentially asymptotic stability, exponentially asymptotic stability in
variation.

Correspondence should be addressed to Yoon Hoe Goo, yhgoo@hanseo.ac.kr.



592 Sang Il Choi and Yoon Hoe Goo

the qualitative analysis of solutions to linear and nonlinear system of
differential equations.

2. Preliminaries

We consider the nonlinear differential system

x′(t) = f(t, x(t)), x(t0) = x0,(2.1)

where f ∈ C(R+ × Rn,Rn), R+ = [0,∞) and Rn is the Euclidean n-
space. We assume that the Jacobian matrix fx = ∂f/∂x exists and is
continuous on R+ × Rn and f(t, 0) = 0. Also, consider the perturbed
differential system of (2.1)

(2.2) y′ = f(t, y) +

∫ t

t0

g(s, y(s))ds, y(t0) = y0,

where g ∈ C(R+ × Rn,Rn) , g(t, 0) = 0. For x ∈ Rn, let |x| =

(
∑n

j=1 x
2
j )

1/2. For an n × n matrix A, define the norm |A| of A by

|A| = sup|x|≤1 |Ax|.
Let x(t, t0, x0) denote the unique solution of (2.1) with x(t0, t0, x0) =

x0, existing on [t0,∞). Then we can consider the associated variational
systems around the zero solution of (2.1) and around x(t), respectively,

v′(t) = fx(t, 0)v(t), v(t0) = v0(2.3)

and

z′(t) = fx(t, x(t, t0, x0))z(t), z(t0) = z0.(2.4)

The fundamental matrix Φ(t, t0, x0) of (2.4) is given by

Φ(t, t0, x0) =
∂

∂x0
x(t, t0, x0),

and Φ(t, t0, 0) is the fundamental matrix of (2.3).
Before giving further details, we give some of the main definitions

that we need in the sequel[9].

Definition 2.1. The system (2.1) (the zero solution x = 0 of (2.1))
is called
(ULS) uniformly Lipschitz stable if there exist M > 0 and δ > 0 such
that |x(t)| ≤M |x0| whenever |x0| ≤ δ and t ≥ t0 ≥ 0
(ULSV) uniformly Lipschitz stable in variation if there exist M > 0 and
δ > 0 such that |Φ(t, t0, x0)| ≤M for |x0| ≤ δ and t ≥ t0 ≥ 0,
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(EAS) exponentially asymptotically stable if there exist constantsK > 0,
c > 0, and δ > 0 such that

|x(t)| ≤ K |x0|e−c(t−t0), 0 ≤ t0 ≤ t

provided that |x0| < δ,
(EASV) exponentially asymptotically stable in variation if there exist
constants K > 0 and c > 0 such that

|Φ(t, t0, x0)| ≤ K e−c(t−t0), 0 ≤ t0 ≤ t

provided that |x0| <∞.

Remark 2.2. [11] The last definition implies that for |x0| ≤ δ

|x(t)| ≤ K |x0|e−c(t−t0), 0 ≤ t0 ≤ t.

We give some related properties that we need in the sequel.

We need Alekseev formula to compare between the solutions of (2.1)
and the solutions of perturbed nonlinear system

y′ = f(t, y) + g(t, y), y(t0) = y0,(2.5)

where g ∈ C(R+×Rn,Rn) and g(t, 0) = 0. Let y(t) = y(t, t0, y0) denote
the solution of (2.5) passing through the point (t0, y0) in R+ × Rn.

The following is a generalization to nonlinear system of the variation
of constants formula due to Alekseev [1].

Lemma 2.3. Let x and y be a solution of (2.1) and (2.5), respectively.
If y0 ∈ Rn, then for all t such that x(t, t0, y0) ∈ Rn,

y(t, t0, y0) = x(t, t0, y0) +

∫ t

t0

Φ(t, s, y(s)) g(s, y(s)) ds.

Lemma 2.4. [14] Let u, p, q, r, v ∈ C(R+), w ∈ C((0,∞)), w(u) be
nondecreasing in u, and u ≤ w(u). Suppose that, for some c ≥ 0,
(2.6)

u(t) ≤ c+

∫ t

t0

(
p(s)

∫ s

t0

[q(τ)u(τ)+v(τ)

∫ τ

t0

r(a)w(u(a))da]dτ
)
ds, t ≥ t0.

Then
(2.7)

u(t) ≤W−1
[
W (c) +

∫ t

t0

(p(s)

∫ s

t0

(q(τ) + v(τ)

∫ τ

t0

r(a)da)dτ)ds
]
, t0 ≤ t < b1,
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where W (u) =
∫ u
u0

ds
w(s) , u > 0, u0 > 0, W−1(u) is the inverse of W (u)

and

b1 = sup
{
t ≥ t0 : W (c)+

∫ t

t0

(p(s)

∫ s

t0

(q(τ)+v(τ)

∫ τ

t0

r(a)da)dτ)ds ∈ domW−1
}
.

Lemma 2.5. [12] Let u, p, q, r, v ∈ C(R+), w ∈ C((0,∞)) and w(u)
be nondecreasing in u. Suppose that for some c ≥ 0,
(2.8)

u(t) ≤ c+
∫ t

t0

(
p(s)

∫ s

t0

[
q(τ)w(u(τ))+v(τ)

∫ τ

t0

r(a)w(u(a))da
]
dτ
)
ds, t ≥ t0.

Then
(2.9)

u(t) ≤W−1
[
W (c)+

∫ t

t0

(p(s)

∫ s

t0

(q(τ)+v(τ)

∫ τ

t0

r(a)da)dτ)ds
]
, t0 ≤ t < b1,

where W , W−1 are the same functions as in Lemma 2.4 and

b1 = sup
{
t ≥ t0 : W (c)+

∫ t

t0

(p(s)

∫ s

t0

(q(τ)+v(τ)

∫ τ

t0

r(a)da)dτ)ds ∈ domW−1
}
.

Lemma 2.6. [8] Let u, λ1, λ2, w ∈ C(R+), w(u) be nondecreasing in
u and 1

vw(u) ≤ w(uv ) for some v > 0. If , for some c > 0,

u(t) ≤ c+
∫ t

t0

λ1(s)u(s)ds+

∫ t

t0

λ1(s)
{∫ s

t0

λ2(τ)w(u(τ))dτ
}
ds, t ≥ t0 ≥ 0,

then

u(t) ≤W−1
[
W (c) +

∫ t

t0

λ2(s)ds
]

exp
(∫ t

t0

λ1(s)ds
)
, t0 ≤ t < b1,

where W , W−1 are the same functions as in Lemma 2.4 and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t

t0

λ2(s)ds ∈ domW−1
}
.

Lemma 2.7. [13] Let u, λ1, λ2, λ3 ∈ C(R+), w ∈ C((0,∞)) and w(u)
be nondecreasing in u, u ≤ w(u). Suppose that for some c > 0,

u(t) ≤ c+
∫ t

t0

λ1(s)w(u(s))ds+

∫ t

t0

λ2(s)(

∫ s

t0

λ3(τ)u(τ)dτ)ds, 0 ≤ t0 ≤ t.

Then
(2.10)

u(t) ≤W−1
[
W (c) +

∫ t

t0

(λ1(s) + λ2(s)

∫ s

t0

λ3(τ))ds
]
, t0 ≤ t < b1,
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where W , W−1 are the same functions as in Lemma 2.4 and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t

t0

(λ1(s) + λ2(s)

∫ s

t0

λ3(τ))ds ∈ domW−1
}
.

Lemma 2.8. [6] Let u, λ1, λ2, λ3 ∈ C(R+), w ∈ C((0,∞)) and w(u)
be nondecreasing in u. Suppose that for some c > 0,

u(t) ≤ c+

∫ t

t0

λ1(s)w(u(s))ds

+

∫ t

t0

λ2(s)
(∫ s

t0

λ3(τ)w(u(τ))dτ
)
ds, 0 ≤ t0 ≤ t.

Then

u(t) ≤W−1
[
W (c) +

∫ t

t0

(λ1(s) + λ2(s)

∫ s

t0

λ3(τ))ds
]
, t0 ≤ t < b1,

where W , W−1 are the same functions as in Lemma 2.4 and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t

t0

(λ1(s) + λ2(s)

∫ s

t0

λ3(τ))ds ∈ domW−1
}
.

3. Main results

In this section, we investigate Lipschitz and asymptotic stability for
solutions of the nonlinear perturbed differential systems.

Theorem 3.1. For the perturbed (2.2), we assume that∫ t

t0

|g(s, y(s))|ds ≤ a(t)
(
|y(t)|+

∫ t

t0

k(s)w(|y(s)|)ds
)
,

where a, k ∈ C(R+), a, k, w ∈ L1(R+) , w ∈ C((0,∞)), w(u) is nonde-
creasing in u, and 1

vw(u) ≤ w(uv ) for some v > 0,

(3.1) M(t0) = W−1
[
W (M) +

∫ ∞
t0

k(s)ds
]

exp
(∫ ∞

t0

Ma(s)ds
)
,

where M(t0) < ∞ and b1 = ∞. Then the zero solution of (2.2) is ULS
whenever the zero solution of (2.1) is ULSV.

Proof. Using the nonlinear variation of constants formula of Alek-
seev[1], the solutions of (2.1) and (2.2) with the same initial value are
related by

y(t, t0, y0) = x(t, t0, y0) +

∫ t

t0

Φ(t, s, y(s))
(∫ s

t0

g(τ, y(τ))dτ
)
ds.
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Since x = 0 of (2.1) is ULSV, it is ULS by Theorem 3.3[9]. Using the
ULSV condition of x = 0 of (2.1), we have

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|
∣∣∣∣ ∫ s

t0

g(τ, y(τ))dτ

∣∣∣∣ds
≤M |y0|+

∫ t

t0

M |y0|a(s)
|y(s)|
|y0|

ds

+

∫ t

t0

M |y0|a(s)

∫ s

t0

k(τ)w
( |y(τ)|
|y0|

)
dτds.

Set u(t) = |y(t)||y0|−1. Now an application of Lemma 2.6 yields

|y(t)| ≤ |y0|W−1
[
W (M) +

∫ ∞
t0

k(s)ds
]

exp
(∫ ∞

t0

Ma(s)ds
)
.

Thus we have |y(t)| ≤M(t0)|y0| for some M(t0) > 0 whenever |y0| < δ.
So, the proof is complete.

Theorem 3.2. For the perturbed (2.2), we assume that

|g(t, y)| ≤ a(t)w(|y(t)|) + b(t)

∫ t

t0

k(s)w(|y(s)|)ds,

where a, b, k ∈ C(R+), a, b, k, w ∈ L1(R+), w ∈ C((0,∞), w(u) is non-
decreasing in u, and 1

vw(u) ≤ w(uv ) for some v > 0,

(3.2) M(t0) = W−1
[
W (M) +M

∫ ∞
t0

∫ s

t0

(a(τ) + b(τ)

∫ τ

t0

k(r)dr)dτds
]
,

where M(t0) < ∞ and b1 = ∞. Then the zero solution of (2.2) is ULS
whenever the zero solution of (2.1) is ULSV.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of
(2.1) and (2.2), respectively. Using the nonlinear variation of constants
formula and the ULSV condition of x = 0 of (2.1), we have

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|
∫ s

t0

|g(τ, y(τ))|dτds

≤M |y0|+
∫ t

t0

M |y0|
∫ s

t0

[a(τ)w
( |y(τ)|
|y0|

)
dτds

+

∫ t

t0

M |y0|
∫ s

t0

b(τ)

∫ τ

t0

k(r)w
( |y(r)|
|y0|

)
dr]dτds.
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Set u(t) = |y(t)||y0|−1. Now an application of Lemma 2.5 yields

|y(t)| ≤ |y0|W−1
[
W (M) +M

∫ t

t0

∫ s

t0

(a(τ) + b(τ)

∫ τ

t0

k(r)dr)dτds
]
,

Thus we have |y(t)| ≤M(t0)|y0| for some M(t0) > 0 whenever |y0| < δ,
and so the proof is complete.

Remark 3.1. Letting b(t) = 0 in Theorem 3.2, we obtain the same
result as that of Theorem 3.1 in [5].

Theorem 3.3. For the perturbed (2.2), we assume that∫ t

t0

|g(s, y(s))|ds ≤ a(t)w(|y(t)|) + b(t)

∫ t

t0

k(s)w(|y(s)|)ds,

where a, b, k ∈ C(R+), a, b, k, w ∈ L1(R+) , w ∈ C((0,∞), w(u) is
nondecreasing in u, and 1

vw(u) ≤ w(uv ) for some v > 0,

(3.3) M(t0) = W−1
[
W (M) +M

∫ ∞
t0

(a(s) + b(s)

∫ s

t0

k(τ)dτ)ds
]
,

where M(t0) < ∞ and b1 = ∞. Then the zero solution of (2.2) is ULS
whenever the zero solution of (2.1) is ULSV.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of
(2.1) and (2.2), respectively. Since x = 0 of (2.1) is ULSV, it is ULS.
Applying Lemma 2.3, we have

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|
∣∣∣∣ ∫ s

t0

g(τ, y(τ))dτ

∣∣∣∣ds
≤M |y0|+

∫ t

t0

M |y0|a(s)w(
|y(s)|
|y0|

)ds

+

∫ t

t0

M |y0|b(s)
∫ s

t0

k(τ)w(
|y(τ)|
|y0|

)dτds.

Set u(t) = |y(t)||y0|−1. Now an application of Lemma 2.8 yields

|y(t)| ≤ |y0|W−1
[
W (M) +M

∫ t

t0

(a(s) + b(s)

∫ s

t0

k(τ)dτ)ds
]
.

Hence we have |y(t)| ≤M(t0)|y0| for some M(t0) > 0 whenever |y0| < δ.
This completes the proof.

Remark 3.2. Letting b(t) = 0 in Theorem 3.3, we obtain the same
result as that of Theorem 3.3 in [5].
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Theorem 3.4. Let the solution x = 0 of (2.1) be EASV. Suppose
that the perturbing term g(t, y) satisfies

(3.4) |g(t, y(t))| ≤ e−αt
(
a(t)|y(t)|+ b(t)

∫ t

t0

k(s)w(|y(s)|)ds
)
,

where α > 0, a, b, k, w ∈ C(R+), a, b, k, w ∈ L1(R+) , w(u) is nonde-
creasing in u, u ≤ w(u), and 1

vw(u) ≤ w(uv ) for some v > 0. If

M(t0) = W−1
[
W (c) +

∫ ∞
t0

(
Meαs

∫ s

t0

a(τ)

+ b(τ)

∫ τ

t0

k(r)dr)dτ
)
ds
]
<∞, t ≥ t0.

(3.5)

where c = |y0|Meαt0 , then all solutions of (2.2) approch zero as t→∞

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of
(2.1) and (2.2), respectively. Since the solution x = 0 of (2.1) is EASV,
by remark 2.2, it is EVS. Using Lemma 2.3, we have

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|
∣∣∣∣ ∫ s

t0

g(τ, y(τ))dτ

∣∣∣∣ds
≤M |y0|e−α(t−t0) +

∫ t

t0

Me−α(t−s)
∫ s

t0

[
e−ατa(τ)|y(τ)|

+e−ατ b(τ)

∫ τ

t0

k(r)w(|y(r)|)drdτ
]
ds,

≤M |y0|e−α(t−t0) +

∫ t

t0

Me−α(t−s)
∫ s

t0

[
a(τ)|y(τ)|eατ

+b(τ)

∫ τ

t0

k(r)w(|y(r)|eαr)drdτ
]
ds.

Set u(t) = |y(t)|eαt. An application of Lemma 2.4 obtains

|y(t)| ≤ e−αtW−1
[
W (c) +

∫ t

t0

(Meαs
∫ s

t0

(a(τ) + b(τ)

∫ τ

t0

k(r)dr)dτ)ds
]

≤ e−αtM(t0), t ≥ t0,

where c = M |y0|eαt0 and M(t0) > 0. Therefore, all solutions of (2.2)
approch zero as t→∞.
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Theorem 3.5. Let the solution x = 0 of (2.1) be EASV. Suppose
that the perturbing term g(t, y) satisfies

(3.6)

∫ t

t0

|g(s, y(s))|ds ≤ e−αt
(
a(t)w(|y(t)|) + b(t)

∫ t

t0

k(s)|y(s)|ds
)
,

where α > 0, a, b, k, w ∈ C(R+), a, b, k, w ∈ L1(R+), w(u) is nonde-
creasing in u and u ≤ w(u). If
(3.7)

M(t0) = W−1
[
W (c) +M

∫ ∞
t0

(a(s) + b(s)

∫ s

t0

k(τ)dτ)ds
]
<∞, b1 =∞,

where c = M |y0|eαt0 , then all solutions of (2.2) approch zero as t→∞

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of
(2.1) and (2.2), respectively. Since the solution x = 0 of (2.1) is EASV,
by remark 2.2, it is EVS. Using Lemma 2.3 and the assmptions, we have

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|
∣∣∣∣ ∫ s

t0

g(τ, y(τ))dτ

∣∣∣∣ds
≤M |y0|e−α(t−t0) +

∫ t

t0

Me−α(t−s)
[a(s)

eαs
w(|y(s)|)

+
b(s)

eαs

∫ s

t0

k(τ)|y(τ)|dτ
]
ds

≤M |y0|e−α(t−t0) +

∫ t

t0

Me−αt
[
a(s)w(|y(s)|eαs)

+b(s)

∫ s

t0

k(τ)|y(τ)|eατdτ
]
ds.

Set u(t) = |y(t)|eαt. Since w(u) is nondecreasing, an application of
Lemma 2.7 obtains

|y(t)| ≤ e−αtW−1
[
W (c) +M

∫ t

t0

(
a(s) + b(s)

∫ s

t0

k(τ)dτ
)
ds
]
,

≤ e−αtM(t0), t ≥ t0,

where c = M |y0|eαt0 and M(t0) > 0. From the above estimation, we
obtains the desired result.

Remark 3.3. Letting b(t) = 0 in Theorem 3.5, we obtain the same
result as that of Theorem 3.7 in [5].
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Theorem 3.6. Let the solution x = 0 of (2.1) be EASV. Suppose
that the perturbing term g(t, y) satisfies

(3.8)

∫ t

t0

|g(s, y(s))|ds ≤ e−αta(t)
(
|y(t)|+

∫ t

t0

k(s)w(|y(s)|)ds
)
,

where α > 0, a, k, w ∈ C(R+), a, k, w ∈ L1(R+) and w(u) is nondecreas-
ing in u. If
(3.9)

M(t0) = W−1
[
W (c) +

∫ ∞
t0

k(τ)dτ)
]

exp
(
M

∫ ∞
t0

a(s)ds
)
<∞, b1 =∞,

and
∫∞
t0
a(s) < ∞ where c = M |y0|eαt0 , then all solutions of (2.2)

approch zero as t→∞

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of
(2.1) and (2.2), respectively. Using Lemma 2.3 and the assmptions, we
have

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|
∣∣∣∣ ∫ s

t0

g(τ, y(τ))dτ

∣∣∣∣ds
≤M |y0|e−α(t−t0) +

∫ t

t0

Me−α(t−s)
[a(s)

eαs
|y(s)|

+
a(s)

eαs

∫ s

t0

k(τ)w(|y(τ)|)dτ
]
ds

≤M |y0|e−α(t−t0) +

∫ t

t0

Me−αt
[
a(s)|y(s)|eαs

+a(s)

∫ s

t0

k(τ)w(|y(τ)|eατ )dτ
]
ds.

Set u(t) = |y(t)|eαt. Since w(u) is nondecreasing, an application of
Lemma 2.6 obtains

|y(t)| ≤ e−αtW−1
[
W (c) +

∫ t

t0

k(τ)dτ)
]

exp
(
M

∫ t

t0

a(s)ds
)
,

≤ e−αtM(t0), t ≥ t0,

where c = M |y0|eαt0 and M(t0) > 0. Therefore, all solutions of (2.2)
approch zero as t→∞

Remark 3.4. Letting k(t) = 0 in Theorem 3.6, we obtain the same
result as that of Corollary 3.8 in [5].
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