• Title/Summary/Keyword: astrocytes

Search Result 278, Processing Time 0.022 seconds

Efficient Generation of Dopaminergic Neurons from Mouse Ventral Midbrain Astrocytes

  • Jin Yi Han;Eun-Hye Lee;Sang-Mi Kim;Chang-Hwan Park
    • Biomolecules & Therapeutics
    • /
    • v.31 no.3
    • /
    • pp.264-275
    • /
    • 2023
  • Parkinson's disease (PD) is a common neurodegenerative disorder characterized by tremors, bradykinesia, and rigidity. PD is caused by loss of dopaminergic (DA) neurons in the midbrain substantia nigra (SN) and therefore, replenishment of DA neurons via stem cell-based therapy is a potential treatment option. Astrocytes are the most abundant non-neuronal cells in the central nervous system and are promising candidates for reprogramming into neuronal cells because they share a common origin with neurons. The ability of neural progenitor cells (NPCs) to proliferate and differentiate may overcome the limitations of the reduced viability and function of transplanted cells after cell replacement therapy. Achaete-scute complex homolog-like 1 (Ascl1) is a well-known neuronal-specific factor that induces various cell types such as human and mouse astrocytes and fibroblasts to differentiate into neurons. Nurr1 is involved in the differentiation and maintenance of DA neurons, and decreased Nurr1 expression is known to be a major risk factor for PD. Previous studies have shown that direct conversion of astrocytes into DA neurons and NPCs can be induced by overexpression of Ascl1 and Nurr1 and additional transcription factors genes such as superoxide dismutase 1 and SRY-box 2. Here, we demonstrate that astrocytes isolated from the ventral midbrain, the origin of SN DA neurons, can be effectively converted into DA neurons and NPCs with enhanced viability. In addition, when these NPCs are inducted to differentiate, they exhibit key characteristics of DA neurons. Thus, direct conversion of midbrain astrocytes is a possible cell therapy strategy to treat neurodegenerative diseases.

Effects of Korean Red Ginseng extract on tissue plasminogen activator and plasminogen activator inhibitor-1 expression in cultured rat primary astrocytes

  • Ko, Hyun Myung;Joo, So Hyun;Kim, Pitna;Park, Jin Hee;Kim, Hee Jin;Bahn, Geon Ho;Kim, Hahn Young;Lee, Jongmin;Han, Seol-Heui;Shin, Chan Young;Park, Seung Hwa
    • Journal of Ginseng Research
    • /
    • v.37 no.4
    • /
    • pp.401-412
    • /
    • 2013
  • Korean Red Ginseng (KRG) is an oriental herbal preparation obtained from Panax ginseng Meyer (Araliaceae). To expand our understanding of the action of KRG on central nervous system (CNS) function, we examined the effects of KRG on tissue plasminogen activator (tPA)/plasminogen activator inhibitor-1 (PAI-1) expression in rat primary astrocytes. KRG extract was treated in cultured rat primary astrocytes and neuron in a concentration range of 0.1 to 1.0 mg/mL and the expression of functional tPA/PAI-1 was examined by casein zymography, Western blot and reverse transcription-polymerase chain reaction. KRG extracts increased PAI-1 expression in rat primary astrocytes in a concentration dependent manner (0.1 to 1.0 mg/mL) without affecting the expression of tPA itself. Treatment of 1.0 mg/mL KRG increased PAI-1 protein expression in rat primary astrocytes to $319.3{\pm}65.9%$ as compared with control. The increased PAI-1 expression mediated the overall decrease in tPA activity in rat primary astrocytes. Due to the lack of PAI-1 expression in neuron, KRG did not affect tPA activity in neuron. KRG treatment induced a concentration dependent activation of PI3K, p38, ERK1/2, and JNK in rat primary astrocytes and treatment of PI3K or MAPK inhibitors such as LY294002, U0126, SB203580, and SP600125 (10 ${\mu}M$ each), significantly inhibited 1.0 mg/mL KRG-induced expression of PAI-1 and down-regulation of tPA activity in rat primary astrocytes. Furthermore, compound K but not other ginsenosides such as Rb1 and Rg1 induced PAI-1 expression. KRG-induced up-regulation of PAI-1 in astrocytes may play important role in the regulation of overall tPA activity in brain, which might underlie some of the beneficial effects of KRG on CNS such as neuroprotection in ischemia and brain damaging condition as well as prevention or recovery from addiction.

Gintonin-mediated release of astrocytic vascular endothelial growth factor protects cortical astrocytes from hypoxia-induced cell damages

  • Choi, Sun-Hye;Kim, Hyeon-Joong;Cho, Hee-Jung;Park, Sang-Deuk;Lee, Na-Eun;Hwang, Sung-Hee;Rhim, Hyewon;Kim, Hyoung-Chun;Cho, Ik-Hyun;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • v.43 no.2
    • /
    • pp.305-311
    • /
    • 2019
  • Background: Gintonin is a ginseng-derived exogenous ligand of the G protein-coupled lysophosphatidic acid (LPA) receptor. We previously reported that gintonin stimulates gliotransmitter release in primary cortical astrocytes. Astrocytes play key roles in the functions of neurovascular systems. Although vascular endothelial growth factor (VEGF) is known to influence the normal growth and maintenance of cranial blood vessels and the nervous system, there is little information about the effect of gintonin on VEGF regulation in primary astrocytes, under normal and hypoxic conditions. Methods: Using primary cortical astrocytes of mice, the effects of gintonin on the release, expression, and distribution of VEGF were examined. We further investigated whether the gintonin-mediated VEGF release protects astrocytes from hypoxia. Results: Gintonin administration stimulated the release and expression of VEGF from astrocytes in a concentration- and time-dependent manner. The gintonin-mediated increase in the release of VEGF was inhibited by the LPA1/3 receptor antagonist, Ki16425; phospholipase C inhibitor, U73122; inositol 1,4,5- triphosphate receptor antagonist, 2-APB; and intracellular $Ca^{2+}$ chelator, BAPTA. Hypoxia further stimulated astrocytic VEGF release. Gintonin treatment stimulated additional VEGF release and restored cell viability that had decreased due to hypoxia, via the VEGF receptor pathway. Altogether, the regulation of VEGF release and expression and astrocytic protection mediated by gintonin under hypoxia are achieved via the LPA receptor-VEGF signaling pathways. Conclusion: The present study shows that the gintonin-mediated regulation of VEGF in cortical astrocytes might be neuroprotective against hypoxic insults and could explain the molecular basis of the beneficial effects of ginseng on the central nervous system.

Glial Mechanisms of Neuropathic Pain and Emerging Interventions

  • Jo, Daehyun;Chapman, C. Richard;Light, Alan R.
    • The Korean Journal of Pain
    • /
    • v.22 no.1
    • /
    • pp.1-15
    • /
    • 2009
  • Neuropathic pain is often refractory to intervention because of the complex etiology and an incomplete understanding of the mechanisms behind this type of pain. Glial cells, specifically microglia and astrocytes, are powerful modulators of pain and new targets of drug development for neuropathic pain. Glial activation could be the driving force behind chronic pain, maintaining the noxious signal transmission even after the original injury has healed. Glia express chemokine, purinergic, toll-like, glutaminergic and other receptors that enable them to respond to neural signals, and they can modulate neuronal synaptic function and neuronal excitability. Nerve injury upregulates multiple receptors in spinal microglia and astrocytes. Microglia influence neuronal communication by producing inflammatory products at the synapse, as do astrocytes because they completely encapsulate synapses and are in close contact with neuronal somas through gap junctions. Glia are the main source of inflammatory mediators in the central nervous system. New therapeutic strategies for neuropathic pain are emerging such as targeting the glial cells, novel pharmacologic approaches and gene therapy. Drugs targeting microglia and astrocytes, cytokine production, and neural structures including dorsal root ganglion are now under study, as is gene therapy. Isoform-specific inhibition will minimize the side effects produced by blocking all glia with a general inhibitor. Enhancing the anti-inflammatory cytokines could prove more beneficial than administering proinflammatory cytokine antagonists that block glial activation systemically. Research on therapeutic gene transfer to the central nervous system is underway, although obstacles prevent immediate clinical application.

Adenosine and Purine Nucleosides Prevent the Disruption of Mitochondrial Transmembrane Potential by Peroxynitrite in Rat Primary Astrocytes

  • Choi, Ji-Woong;Yoo, Byung-Kwon;Ryu, Mi-Kyoung;Choi, Min-Sik;Park, Gyu-Hwan;Ko, Kwang-Ho
    • Archives of Pharmacal Research
    • /
    • v.28 no.7
    • /
    • pp.810-815
    • /
    • 2005
  • Previously, we have shown that astrocytes deprived of glucose became highly vulnerable to peroxynitrite, and adenosine and its metabolites attenuated the gliotoxicity via the preservation of cellular ATP level. Here, we found that adenosine and related metabolites prevented the disruption of mitochondrial transmembrane potential (MTP) in glucose-deprived rat primary astrocytes exposed to 3-morpholinosydnonimine (SIN-1), a peroxynitrite releasing agent. Exposure to glucose deprivation and SIN-1(2h) significantly disrupted MTP in astrocytes, and adenosine prevented it in dose-dependent manner with an $EC_{50}\;of\;5.08{\mu}M$. Adenosine also partially prevented the cell death by myxothiazol, a well-known inhibitor of mitochondrial respiration. Blockade of adenosine deamination or intracellular transport with erythro-9-(-hydroxy-3-nonyl)adenosine (EHNA) or S-(4-nitrobenzyl)-6-thioinosine (NBTI), respectively, completely reversed the protective effect of adenosine. Other purine nucleos(t)ides including inosine, guanosine, ATP, ADP, AMP, ITP, and GTP also showed similar protective effects. This study indicates that adenosine and related purine nucleos(t)ides may protect astrocytes from peroxynitrite-induced mitochondrial dysfunction.

Arctigenin Increases Hemeoxygenase-1 Gene Expression by Modulating PI3K/AKT Signaling Pathway in Rat Primary Astrocytes

  • Jeong, Yeon-Hui;Park, Jin-Sun;Kim, Dong-Hyun;Kim, Hee-Sun
    • Biomolecules & Therapeutics
    • /
    • v.22 no.6
    • /
    • pp.497-502
    • /
    • 2014
  • In the present study, we found that the natural compound arctigenin inhibited hydrogen peroxide-induced reactive oxygen species (ROS) production in rat primary astrocytes. Since hemeoxygenase-1 (HO-1) plays a critical role as an antioxidant defense factor in the brain, we examined the effect of arctigenin on HO-1 expression in rat primary astrocytes. We found that arctigenin increased HO-1 mRNA and protein levels. Arctigenin also increases the nuclear translocation and DNA binding of Nrf2/c-Jun to the antioxidant response element (ARE) on HO-1 promoter. In addition, arctigenin increased ARE-mediated transcriptional activities in rat primary astrocytes. Further mechanistic studies revealed that arctigenin increased the phosphorylation of AKT, a downstream substrate of phosphatidylinositol 3-kinase (PI3K). Treatment of cells with a PI3K-specific inhibitor, LY294002, suppressed the HO-1 expression, Nrf2 DNA binding and ARE-mediated transcriptional activities in arctigenin-treated astrocyte cells. The results collectively suggest that PI3K/AKT signaling pathway is at least partly involved in HO-1 expression by arctigenin via modulation of Nrf2/ARE axis in rat primary astrocytes.

Inhibitory Effects of Ginseng Total Saponins on Hypoxia-induced Dysfunction and Injuries of Cultured Astrocytes

  • Seong, Yeon-Hee;Kim, Hack-Seang
    • Archives of Pharmacal Research
    • /
    • v.20 no.2
    • /
    • pp.103-109
    • /
    • 1997
  • The effects of ginseng total saponins (GTS) on hypoxic damage of primary cultures of astrocytes were studied. Hypoxia was created by placing cultures in an air tight chamber that was flushed with 95% $N_2/5%CO_2$ for 15 min before being sealed. Cultures showed evidence of significant cell injury after 24 h of hypoxia (increased lactate dehydrogenase (LDH) content in the culture medium, cell swelling and decreased glutamate uptake and protein content). Addition of GTS (0.1, 0.3 mg/ml) to the cultures during the exposure to hypoxic conditions produced dose-dependent inhibition of the LDH efflux. GTS (0.1, 0.3 mg/ml) also produced significant inhibition of the increased cell volume of astrocytes measured by $[^3H]$ O-methyl-D-glucose uptake under the hypoxic conditions. Decreased glutamate uptake and protein content was inhibited by GTS. These data suggest that GTS prevents astrocytic cell injury induced by severe hypoxia in vitro.

  • PDF

N,N-Dimethyl-D-ribo-phytosphingosine Modulates Cellular Functions of 1321N1 Astrocytes

  • Lee, Yun-Kyung;Kim, Hyo-Lim;Kim, Kye-Ok;Sacket, Santosh J.;Han, Mi-Jin;Jo, Ji-Yeong;Lim, Sung-Mee;Im, Dong-Soon
    • Biomolecules & Therapeutics
    • /
    • v.15 no.2
    • /
    • pp.73-77
    • /
    • 2007
  • N,N-Dimethyl-D-ribo-phytosphingosine (DMPH) is an N-methyl derivative of sphingosine. In the present paper, we studied effects of DMPH on intracellular Ca$^{2+}$ concentration, pH, glutamate uptake, and cell viability in human 1321N1 astrocytes. DMPH increased intracellular Ca$^{2+}$ concentration and cytosolic pH significantly in a dose-dependent manner. DMPH also inhibited glutamate uptake by 1321N1 astrocytes. Finally, treatment of cells with DMPH for 24 h reduced viability of cells largely and concentration-dependently. In summary, DMPH increased intracellular Ca$^{2+}$ concentration and pH, inhibited glutamate uptake and evoked cytotoxicity in 1321N1 astrocytes. Our observations with DMPH in the 1321N1 astrocytes would enhance understanding of DMPH actions in the brain.

Effects of Chemical Anoxia Inducers on Cellular Functions of Cultured Rat Cortical Astrocytes (배양된 흰쥐 대뇌 피질 astrocytes의 세포기능에 대한 화학적 무산소증 유도물의 효과)

  • 이선애;박우규;성연희
    • YAKHAK HOEJI
    • /
    • v.43 no.6
    • /
    • pp.851-860
    • /
    • 1999
  • The effects of antimycin A(AA), dodium azide ($NaN_3$) and 2,4-dinitrophenol (DNP), which inhibit mitochondrial ATP production, on cellular functions of cultured astrocytes were studied. High concentrations of AA $(50{\;}\mu\textrm{g}/ml),{\;}NaN_3$ (100mM) and DNP (20mM) significantly decreased 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) reduction, which was known to be related to mitochondrial function and then cel viability. AA ($50{\;}\mu\textrm{g}/ml$) increased lactate dehydrogenase (LDH) release and decreased [$^3H$] glutamate uptake, suggesting severe damage of cellular function by the concentrations of the compounds. Meanwhile, low concentrations of AA $(\leq{;\}10{\;}\mu\textrm{g}/ml),{\;}NaN_3{;\}(\leq{\;}50mM)$ and DNP ($\leq{\;}5mM$) significantly increased MTT reduction, the effect of which was specific to astrocytes. AA (5 and $10{\;}\mu\textrm{g}/ml$) did not affect LDH release and [$^3H$] glutamate uptake, indicating that these compounds increased MTT reduction at the low concentrations without cellular membrane damage. However, the low concentrations of AA produced significant decrease of MTT reduction in a glucose-free medium. Low concentrations of AA (1 and $5{\;}\mu\textrm{g}/ml$) did not change ATP production of astrocytes in the medium containing 10 mM glucose, but completely inhibited in a glucose-free medium, suggesting marked increase of cytosolic ATP production by the blockade of mitochondrial ATP production with low concentrations of AA. These results suggest that astrocytes have ability to enhance neuronal function or survival under conditions of incomplete ischemia or early by enhancement of glycolysis, and that cellular reduction of MTT occurs not only mitochondrially but also extramitchondrially.

  • PDF

Etoposide Induces Mitochondrial Dysfunction and Cellular Senescence in Primary Cultured Rat Astrocytes

  • Bang, Minji;Kim, Do Gyeong;Gonzales, Edson Luck;Kwon, Kyoung Ja;Shin, Chan Young
    • Biomolecules & Therapeutics
    • /
    • v.27 no.6
    • /
    • pp.530-539
    • /
    • 2019
  • Brain aging is an inevitable process characterized by structural and functional changes and is a major risk factor for neurodegenerative diseases. Most brain aging studies are focused on neurons and less on astrocytes which are the most abundant cells in the brain known to be in charge of various functions including the maintenance of brain physical formation, ion homeostasis, and secretion of various extracellular matrix proteins. Altered mitochondrial dynamics, defective mitophagy or mitochondrial damages are causative factors of mitochondrial dysfunction, which is linked to age-related disorders. Etoposide is an anti-cancer reagent which can induce DNA stress and cellular senescence of cancer cell lines. In this study, we investigated whether etoposide induces senescence and functional alterations in cultured rat astrocytes. Senescence-associated ${\beta}$-galactosidase (SA-${\beta}$-gal) activity was used as a cellular senescence marker. The results indicated that etoposide-treated astrocytes showed cellular senescence phenotypes including increased SA-${\beta}$-gal-positive cells number, increased nuclear size and increased senescence-associated secretory phenotypes (SASP) such as IL-6. We also observed a decreased expression of cell cycle markers, including PhosphoHistone H3/Histone H3 and CDK2, and dysregulation of cellular functions based on wound-healing, neuronal protection, and phagocytosis assays. Finally, mitochondrial dysfunction was noted through the determination of mitochondrial membrane potential using tetramethylrhodamine methyl ester (TMRM) and the measurement of mitochondrial oxygen consumption rate (OCR). These data suggest that etoposide can induce cellular senescence and mitochondrial dysfunction in astrocytes which may have implications in brain aging and neurodegenerative conditions.