Effects of Chemical Anoxia Inducers on Cellular Functions of Cultured Rat Cortical Astrocytes

배양된 흰쥐 대뇌 피질 astrocytes의 세포기능에 대한 화학적 무산소증 유도물의 효과

  • Published : 1999.12.01

Abstract

The effects of antimycin A(AA), dodium azide ($NaN_3$) and 2,4-dinitrophenol (DNP), which inhibit mitochondrial ATP production, on cellular functions of cultured astrocytes were studied. High concentrations of AA $(50{\;}\mu\textrm{g}/ml),{\;}NaN_3$ (100mM) and DNP (20mM) significantly decreased 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) reduction, which was known to be related to mitochondrial function and then cel viability. AA ($50{\;}\mu\textrm{g}/ml$) increased lactate dehydrogenase (LDH) release and decreased [$^3H$] glutamate uptake, suggesting severe damage of cellular function by the concentrations of the compounds. Meanwhile, low concentrations of AA $(\leq{;\}10{\;}\mu\textrm{g}/ml),{\;}NaN_3{;\}(\leq{\;}50mM)$ and DNP ($\leq{\;}5mM$) significantly increased MTT reduction, the effect of which was specific to astrocytes. AA (5 and $10{\;}\mu\textrm{g}/ml$) did not affect LDH release and [$^3H$] glutamate uptake, indicating that these compounds increased MTT reduction at the low concentrations without cellular membrane damage. However, the low concentrations of AA produced significant decrease of MTT reduction in a glucose-free medium. Low concentrations of AA (1 and $5{\;}\mu\textrm{g}/ml$) did not change ATP production of astrocytes in the medium containing 10 mM glucose, but completely inhibited in a glucose-free medium, suggesting marked increase of cytosolic ATP production by the blockade of mitochondrial ATP production with low concentrations of AA. These results suggest that astrocytes have ability to enhance neuronal function or survival under conditions of incomplete ischemia or early by enhancement of glycolysis, and that cellular reduction of MTT occurs not only mitochondrially but also extramitchondrially.

Keywords

References

  1. Handbook of Neurochemistry(2nd ed.) v.1;2 Hertz, L.
  2. Astrocytes v.3 Phyaiological and pathological aspects of astrocytic swelling Kimelberg, H. K.;Ransom, B. R.
  3. Nature v.335 Electrogenic glutamate uptake in glial cells in activated by intracellular potassium Barbour, B.;Brew, H.;Attwell, D.
  4. Proc. Natl. Acad. Sci.(USA) v.85 Patch-clamp study of gamma-aminobutyric acid receptro $Cl^{-}$channels in cultured astrocytes Bormann, J.;Kettenmann, H.
  5. Glia v.1 Glutamate opens $Na^{+}/K^{+}$ channel in cultured astrocytes Sontheimer, H.;Kettenmann, H.;Backus, K. H.;Schachner, M.
  6. J. Physiol. (London) v.432 Activation of glutamate receptors and glutamate uptake in identified macroglial cells in rats ceerebellar cultures Wyllie, D. J.;Mathie, A.;Symonds, C. J.;Cull-Candy, S. G.
  7. Physiol. Rev. v.65 Effect of anoxia on ion distribution in the brain Hansen, A. J.
  8. J. Neurosci. v.12 Energy metabolism of rabbit retina as related to function : high cost of $Na^+$ transport Ames, A. 3d.;Li, Y. Y.;Heher, E. C.;Kimble, C. R.
  9. Prog. Neurobiol. v.43 Ions and energy in mammalian brain Erecinska, M.;Silver, I. A.
  10. Neurosurg. Rev. v.1 Pathophysiological and pathochemical aspects of cerebral edema Baethmann, A.
  11. Stroke v.14 Biology and therapeutic potential of prostacyclin Moncada, S.
  12. Brain Edema Membrane events leading to glial swelling and brain edema Siesjo, B. K.
  13. Ann. Neurol. v.19 Glutamate and the pathophysiology of hypoxic-ischemic brain damage Rothman, S. M.;Olney, J. W.
  14. Neuroglia Energy metabolism Hamprecht, B.;Dringen, R.
  15. Brain Res. v.422 Astrocytes protect cultured neurons from degeneration induced by anoxia Vibulsreth, S.;Hefti, F.;Ginsberg, M. D.;Dietrich, W. D.;Busto, R.
  16. J. Cereb. Blood Flow Metab. v.13 Glial glycogen stores affect neuronal survival during glucose deprivation in vitro Swanson, R. A.;Choi, D. W.
  17. Glia v.1 Lactate release from cultured astrocytes and neurons : a comparison Walz, W.;Mukerji, S.
  18. J. Neurosci. v.16 Metabolic coupling between glia and neurons Tsacopoulos, M.;Magistretti, P. J.
  19. Glia v.4 Accumulation of extracellular glutamate and neuronal death in astrocytes-poor cultures exposed to glutamine Rosenberg, P. A.
  20. J. Cereb. Blood Flow Metab. v.10 Astrocytic acidosis in hyperglycemic and complete ischemia Kraig, R. P.;Chesler, M.
  21. Nature v.379 Modulation of non-vesicular glutamate release by pH Billups, B.;Attwell, D.
  22. Physiol. Rev. v.65 Effect of anoxia on ion distribution in the brain Hansen, A. J.
  23. J. Neurosci. Res. v.44 Characterization of a chemical anoxia model in cerebellar granule neurons using sodium azide : protection by nifedipine and MK-801 Varming, T.;Drejer, J.;Frandsen, A.;Schousboe, A.
  24. J. Neurosci. v.18 Effects of glucose deprivation, chemical hypoxia, and stimulated ischemia on Na+ homeostasis in rat spinal cord astrocytes Rose, C. R.;Waxman S. G.;Ransom B. R.
  25. Neurosci. letters v.147 Astrocyte glutamate uptake during chemical hypoxia in vitro Swanson, R. A.
  26. J. Immunol. Methods v.65 Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays Mosmann, T.
  27. Arch. Biochem. Biophy. v.303 Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) : subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction Berridge, M. V.;Tan, A. S.
  28. Cancer Res. v.51 no.10 Tetrazolium-based assays for cellular viability : a critical examination of selected parameters affecting formazan production Vistica, D. T.;Skehan, P.;Scudiero, D.;Monks, A.;Pittman, A.;Boyd, M. R.
  29. Neurochem. Res. v.9 Dissociation of neonatal rat brain by dispase for preparation of primary astrocyte cultures Frangakis, M. V.;Kimelberg, H. K.
  30. Principles and Methods of Toxicology(3nd ed.) Cell cultures in neurotoxicology McCaslin, P. P.;Ho,, I. K.
  31. Proc. Natl. Acad. Sci. v.73 Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor Greene, L. A.;Tischler, A. S.
  32. Methods of enzymatic analysis Lactate dehydrogenase and UV-assay with pyruvate and NADH Bergmeyer, H. U.;Bernt, E.
  33. J. Cereb. Blood Flow Metab. v.9 Hypoxia-induced dysfunctions and injury of astrocytes in primary cell cultures Yu, A. C. H.;Gregory, G. A.;Chan, P. H.
  34. J. Biol. Chem. v.193 Protein measurement with the folin phenol reagent Lowry, O. H.;Rosebrough, N. J.;Farr, A. L.;Randall, R. J.
  35. Anal. Biochem. v.68 A method using 3-O-methyl-D-glucose and phloretin for the determination of intracellular water space of cells in monolayer culture Kletzien, R. F.;Pariza, M. W.;Becker, J. E.;Potter, V. R.
  36. A flexible system of enzymatic analysis Lowry, O. H.;Passonneau, J. V.
  37. J. Neurosurg. v.60 Cerebral circulation and metabolism Siesjo, B. K.
  38. J. Gen. Physiol. v.94 Cardiac ATP-sensitive $K^+$ channels. Evidence for preferential regulation by glycolysis Weiss, J. N.;Lamp, S. T.
  39. Eur. J. Physiol. v.422 The $Na^{+}/K^{+}$ pump of cardiac purkinje cells is preferentially fuelled by glycolytic ATP production Glitsch, H. G.;Tappe. A.