• Title/Summary/Keyword: astaxanthin biosynthesis

Search Result 19, Processing Time 0.02 seconds

Astaxanthin in microalgae: pathways, functions and biotechnological implications

  • Han, Danxiang;Li, Yantao;Hu, Qiang
    • ALGAE
    • /
    • v.28 no.2
    • /
    • pp.131-147
    • /
    • 2013
  • Major progress has been made in the past decade towards understanding of the biosynthesis of red carotenoid astaxanthin and its roles in stress response while exploiting microalgae-based astaxanthin as a potent antioxidant for human health and as a coloring agent for aquaculture applications. In this review, astaxanthin-producing green microalgae are briefly summarized with Haematococcus pluvialis and Chlorella zofingiensis recognized to be the most popular astaxanthin-producers. Two distinct pathways for astaxanthin synthesis along with associated cellular, physiological, and biochemical changes are elucidated using H. pluvialis and C. zofingiensis as the model systems. Interactions between astaxanthin biosynthesis and photosynthesis, fatty acid biosynthesis and enzymatic defense systems are described in the context of multiple lines of defense mechanisms working in concert against photooxidative stress. Major pros and cons of mass cultivation of H. pluvialis and C. zofingiensis in phototrophic, heterotrophic, and mixotrophic culture modes are analyzed. Recent progress in genetic engineering of plants and microalgae for astaxanthin production is presented. Future advancement in microalgal astaxanthin research will depend largely on genome sequencing of H. pluvialis and C. zofingiensis and genetic toolbox development. Continuous effort along the heterotrophic-phototrophic culture mode could lead to major expansion of the microalgal astaxanthin industry.

Astaxanthin Biosynthesis Enhanced by Reactive Oxygen Species in the Green Alga Haematococcus pluvialis

  • Kobayashi, Makio
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.6
    • /
    • pp.322-330
    • /
    • 2003
  • The unicellular green alga Haematococcus pluvialis has recently attracted great inter-est due to its large amounts of ketocarotenoid astaxanthin, 3,3'-dihydroxy-${\beta}$,${\beta}$-carotene-4,4'-dione, widely used commercially as a source of pigment for aquaculture. In the life cycle of H. pluvialis, astaxanthin biosynthesis is associated with a remarkable morphological change from green motile vegetative cells into red immotile cyst cells as the resting stage. In recent years we have studied this morphological process from two aspects: defining conditions governing astaxanthin biosynthesis and questioning the possible function of astaxanthin in protecting algal cells against environmental stress. Astaxanthin accumulation in cysts was induced by a variety of environmental conditions of oxidative stress caused by reactive oxygen species, intense light, drought, high salinity, and high temperature. In the adaptation to stress, abscisic acid induced by reactive oxygen species, would function as a hormone in algal morphogenesis from veget ative to cyst cells. Furthermore, measurements of both in vitro and in vivo antioxidative activities of astaxanthin clearly demonstrated that tolerance to excessive reactive oxygen species is greater in astaxanthin-rich cysts than in astaxanthin-poor cysts or astaxanthin-less vegetative cells. Therefore, reactive oxygen species are involved in the regulation of both algal morph O-genesis and carotenogenesis, and the accumulated astaxanthin in cysts can function as a protective agent against oxidative stress damage. In this study, the physiological roles of astaxanthin in stress response and cell protection are reviewed.

Secondary Carotenoid Accumulation in Haematococcus (Chlorophyceae): Biosynthesis, Regulation, and Biotechnology

  • Jin Eon-Seon;Lee Choul-Gyun;Polle Jurgen E.W.
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.821-831
    • /
    • 2006
  • Unicellular green algae of the genus Haematococcus have been studied extensively as model organisms for secondary carotenoid accumulation. Upon environmental stress, such as strong irradiance or nitrogen deficiency, unicellular green algae of the genus Haematococcus accumulate secondary carotenoids in vesicles in the cytosol. Because secondary carotenoid accumulation occurs only upon specific environmental stimuli, there is speculation about the regulation of the biosynthetic pathway specific for secondary carotenogenesis. Because the carotenoid biosynthesis pathway is located both in the chloroplast and the cytosol, communication between both cellular compartments must be considered. Recently, the induction and regulation of astaxanthin biosynthesis in microalgae received considerable attention because of the increasing use of this secondary carotenoid as a source of pigmentation for fish aquaculture, as a component in cancer prevention, and as a free-radical quencher. This review summarizes the biosynthesis and regulation of the pathway, as well as the biotechnology of astaxanthin production in Haematococcus.

Enhanced Production of Astaxanthin by Metabolically Engineered Non-mevalonate Pathway in Escherichia coli

  • Jeong, Tae Hyug;Cho, Youn Su;Choi, Seong-Seok;Kim, Gun-Do;Lim, Han Kyu
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.2
    • /
    • pp.114-119
    • /
    • 2018
  • Astaxanthin is one of the major carotenoids used in pigment has a great economical value in pharmaceutical markets, feeding, nutraceutical and food industries. This study was to increase the production of astaxanthin by co-expression with transformed Escherichia coli using six genes involved in the non-mevalonate pathway. Involved in the non-mevalonate biosynthetic pathway of the strain Kocuria gwangalliensis were cloned dxs, ispC, ispD, ispE, ispF, ispG, ispH and idi genes in order to increase astaxanthin production from the transformed E. coli. And co-expression with the genes to compared the amount of astaxanthin production. This engineered E. coli, containing both the non-mevalonate pathway gene and the astaxanthin biosynthesis gene cluster, produced astaxanthin at $1,100{\mu}g/g$ DCW (dry cell weight), resulting in approximately three times the production of astaxanthin.

Enhanced Production of Astaxanthin by Metabolic Engineered Isoprenoid Pathway in Escherichia coli (대장균에서 이소프레노이드 생합성 경로의 대사공학적 개량에 의한 아스타잔틴의 생산성 향상)

  • Lee, Jae-Hyung;Seo, Yong-Bae;Kim, Young-Tae
    • Journal of Life Science
    • /
    • v.18 no.12
    • /
    • pp.1764-1770
    • /
    • 2008
  • The goal of this study is to increase production of astaxanthin in recombinant Escherichia coli by engineered isoprenoid pathway. We have previously reported structural and functional analysis of the astaxanthin biosynthesis genes from a marine bacterium, Paracoccus haeundaensis. The carotenoid biosynthesis gene cluster involved in astaxanthin production contained six carotenogenic genes (crtW, crtZ, crtY, crtI, crtB, and crtE genes) and recombinant E. coli harboring six carotenogenic genes from P. haeundaensis produced 400 ${\mu}g$/g dry cell weight (DCW) of astaxanthin. In order to increase production of astaxanthin in recombinant E. coli, we have cloned 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (lytB), farnesyl diphosphate (FPP) synthase (ispA), and isopentenyl (IPP) diphossphate isomerase (idi) in the isoprenoid pathway from E. coli and coexpressed these genes in recombinant E. coli harboring the astaxanthin biosynthesis genes. This engineered E. coli strain containing both isoprenoid pathway gene and astaxanthin biosynthesis gene cluster produced 1,200 ${\mu}g$/g DCW of astaxanthin, resulting 3-fold increased production of astaxanthin.

Influence of High Light and Nitrate Deprivation on the Carotenoid Biosynthesis in Haematococcus pluvialis (고광도와 질소 결핍이 Haematococcus pluvialis의 색소 생합성에 미치는 영향)

  • Yun, Ji-Hyun;Kwak, In-Kyu;Jin, Eon-Seon
    • Microbiology and Biotechnology Letters
    • /
    • v.35 no.4
    • /
    • pp.292-297
    • /
    • 2007
  • The unicellular green alga, Haematococcus pluvialis used as a biological production system for astaxanthin. It accumulates large amounts of the red ketocarotenoid astaxanthin when exposed to various environmental stress such as active oxygen species and high light intensities. To induce astaxanthin biosynthesis of H. pluvialis, cells were incubated in either nitrate free at $25^{\circ}C$ under continuous high light intensity ($1,000\;{\mu}mol$ photons $m^{-2}s^{-1}$) for 2 days or high light stress only. Expressions of astaxanthin biosynthetic genes such as carotenoid hydroxylase, IPP isomerase and ${\beta}$-carotene ketolase were monitored under different culture conditions by using real time RT-PCR. All the subjected genes increased their expression under highlight and N-deprivation condition where a large amount of astaxanthin was accumulated.

Enhanced Production of Astaxanthin by Archaea Chaperonin in Escherichia coli (대장균에서 고세균 샤페론을 이용한 아스타잔틴 생산능 향상을 위한 연구)

  • Seo, Yong Bae;Lee, Jong Kyu;Jeong, Tae Hyug;Nam, Soo-Wan;Kim, Gun-Do
    • Journal of Life Science
    • /
    • v.25 no.12
    • /
    • pp.1339-1346
    • /
    • 2015
  • The aim of this study is to increase production of carotenoids in recombinant Escherichia coli by Archaea chaperonin. The carotenoids are a widely distributed class of structurally and functionally diverse yellow, orange, and red natural pigments. These pigments are synthesized in bacteria, algae, fungi, and plants, and have been widely used as a feed supplement from poultry rearing to aquaculture. Carotenoids also exhibit diverse biological properties, such as strong antioxidant and antitumor activities, and enhancement of immune responses. In the microbial world, carotenoids are present in both anoxygenic and oxygenic photosynthetic bacteria and algae and in many fungi. We have previously reported cloning and functional analysis of the carotenoid biosynthesis genes from Paracoccus haeundaensis. The carotenogenic gene cluster involved in astaxanthin production contained seven carotenogenic genes (crtE, crtB, crtI, crtY, crtZ, crtW and crtX genes) and recombinant Escherichia coli harboring seven carotenogenic genes from Paracoccus haeundaensis produced 400 μg/g dry cell weight (DCW) of astaxanthin. In order to increase production of astaxanthin, we have co-expressed chaperone genes (ApCpnA and ApCpnB) in recombinant Escherichia coli harboring the astaxanthin biosynthesis genes. This engineered Escherichia coli strain containing both chaperone gene and astaxanthin biosynthesis gene cluster produced 890 μg/g DCW of astaxanthin, resulting 2-fold increased production of astaxanthin.

Enhancing Astaxanthin Accumulation in Haematococcus pluvialis by Coupled Light Intensity and Nitrogen Starvation in Column Photobioreactors

  • Zhang, Wen-wen;Zhou, Xue-fei;Zhang, Ya-lei;Cheng, Peng-fei;Ma, Rui;Cheng, Wen-long;Chu, Hua-qiang
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.12
    • /
    • pp.2019-2028
    • /
    • 2018
  • Natural astaxanthin mainly derives from a microalgae producer, Haematococcus pluvialis. The induction of nitrogen starvation and high light intensity is particularly significant for boosting astaxanthin production. However, the different responses to light intensity and nitrogen starvation needed to be analyzed for biomass growth and astaxanthin accumulation. The results showed that the highest level of astaxanthin production was achieved in nitrogen starvation, and was 1.64 times higher than the control group at 11 days. With regard to the optimization of light intensity utilization, it was at $200{\mu}mo/m^2/s$ under nitrogen starvation that the highest astaxanthin productivity per light intensity was achieved. In addition, both high light intensity and a nitrogen source had significant effects on multiple indicators. For example, high light intensity had a greater significant effect than a nitrogen source on biomass dry weight, astaxanthin yield and astaxanthin productivity; in contrast, nitrogen starvation was more beneficial for enhancing astaxanthin content per dry weight biomass. The data indicate that high light intensity synergizes with nitrogen starvation to stimulate the biosynthesis of astaxanthin.

Fermentation Process Characteristics of Phaffia rhodozyma Mutant B76 for Astaxanthin Biosynthesis (Astaxanthin 생합성을 위한 Phaffia rhodoxyma 변이주 B76의 발효공정 특성)

  • 임달택;이은규
    • KSBB Journal
    • /
    • v.15 no.2
    • /
    • pp.125-133
    • /
    • 2000
  • Specific carotenoids and astaxanthin biosynthesis power of Phaffia rhodozyma mutant 876, which was obtained after NTG a and UV treatments, was higher than those of the wild type by 40% and 50%, respectively. The mutant strain did not show t the catabolite repression even at 22% (w/v) glucose concentration. The optimum C{N ratio was 2.0, and the optimum t temperature and initial pH were $22^{\circ}C$ and 6.0, respectively. 80th cell growth and astaxanthin formation decreased drastically a as the fermentation temperature was increased over $22^{\circ}C$, whereas they were comparable in the pH range between 5.0 and 7 7.0. Inoculum size did not affect the final cell density nor the carotenoids biosynthesis, and 3%(v/v) was selected as optimal. H Higher dissolved oxygen concentration facilitated astaxanthin biosynthesis, and aeration rate of 1.0 v/0/m and agitation speed of 400 rpm were selected as optimum. The final cell dens때 of 43.3 g/L and the volumetric astaxanthin and carotenoids concentrations of 110.6 mg/L and 149.4 mg/L, respectively, were obtained. The specific carotenoids concentration was 3.45 m mg{g-yeast(dry). Yx/s and Yp/s values of 0.37 and 1.08 were obtained. The result of this study will provide basic information u useful for mass production of astaxanthin from P. rhodozyma fermentation.

  • PDF

Structure and Function of the Genes Involved in the Biosynthesis of Carotenoids in the Mucorales

  • Iturriaga, Enrique A.;Velayos, Antonio;Eslava, Arturo P.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.4
    • /
    • pp.263-274
    • /
    • 2000
  • Carotenoids are widely distributed natural pigments which are in an increasing demand by the market, due to their applicatins in the human food, animal feed, cosmetics, and pharmaceutical industries. Although more than 600 carotenoids have been identified in nature, only a few are industrially important (${\beta}$-carotene, astaxanthin, lutein or lycopene). To date chemical processes manufacture most of the carotenoid production, but the interest for carotenoids of biological origin is growing since theire is an increased public concern over the safety of artificial food colorants. Although much interest and effort has been devoted to the use of biological sources for industrially important carotenoids, only the production of biological ${\beta}$-carotene and astaxanthin has been reported. Among fungi, several Mucorales strains, particularly Blakeslea trispora, have been used to develop fermentation processes for the production of ${\beta}$-carotene on almost competitive cost-price levels. Similarly, the basidiomycetous yeast Xanthophyllomyces dendrorhous (the perfect state of Phaffia rhodozyma), has been proposed as a promising source of astaxanthin. This paper focuses on recent findings on the fungal pathways for carotenoid production, especially the structure and function of the genes involved in the biosynthesis of carotenoids in the Mucorales. An outlook of the possibilities of an increased industrial production of carotenoids, based on metabolic engineering of fungi for carotenoid content and composition, is also discussed.

  • PDF