• Title/Summary/Keyword: assessment of safety

Search Result 5,533, Processing Time 0.048 seconds

Educational needs of severe trauma treatment simulation based on mixed reality: Applying focus group interviews to military hospital nurses (혼합현실 기반 중증외상 처치 시뮬레이션 교육 요구 조사: 군병원 간호사 대상 포커스 그룹 인터뷰 적용)

  • Jang, Seon Mi;Hwang, Sinwoo;Jung, Yoomi;Jung, Eunyoung
    • The Journal of Korean Academic Society of Nursing Education
    • /
    • v.27 no.4
    • /
    • pp.423-435
    • /
    • 2021
  • Purpose: The purpose of this study is to identify the educational needs of a severe trauma treatment simulation program based on mixed reality which combines element of both virtual reality and augmented reality. Methods: Focus group interviews were conducted with ten military hospital nurses on February 4 and 5, 2021. The collected data were analyzed using a qualitative content analysis. As a framework for data analysis, the educational needs were clustered into the following four categories: teaching contents, teaching methods, teaching evaluation, and teaching environment. Results: The educational needs for each category that emerged were as follows: three subcategories including "realistic education reflecting actual clinical practice" and "motivating education" for teaching contents; five subcategories including "team-based education," "repeated education that acts as embodied learning," and "stepwise education" for teaching methods; six subcategories including "debriefing through video conferences," "team evaluation and evaluator in charge of the team," "combination of knowledge and practice evaluation" for teaching evaluation; six subcategories including "securing safety," "similar settings to real clinical environments," "securing of convenience and accessibility for learners," and "operating as continuing education" for teaching environment. Conclusion: The findings of this study can provide a guide for the development and operation of a severe trauma treatment simulation program based on mixed reality. Moreover, it suggests that research to identify the educational needs of various learners should be conducted.

Development and Application of Drop Impact Tester for Aerospace Structures (항공우주구조물 낙하충격시험기 개발 및 응용)

  • Yesol Shin;Hyejin Kim;Juho Lee
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.3
    • /
    • pp.56-64
    • /
    • 2024
  • In this study, a drop impact tester was developed to comprehensively conduct basic testing and academic research on the drop impact characteristics of aerospace structures. A drop tester enables accurate assessment of the dynamic stresses and deformations that occur when an aircraft collides with the ground, thereby enabling the verification of important design factors, such as safety and mechanical strength. The drop tester consists of an electromagnet to attach and drop the test object, a crane to adjust the drop height of the test object, and a drop support structure for vertical drops. Numerical analysis of the drop test object for the test was performed, and basic tests were performed using the drop impact tester. Through the analysis and test results, the structural shape of the landing gear was analyzed, and the behavior of each part was evaluated.

Application of Toxicity Identification Evaluation Procedures for Toxic Effluents from the Aluminum Rolling Industry (알루미늄 가공 공장 배출 방류수의 독성 원인물질 탐색)

  • Ra, Jin-Sung;Lee, Jiho;Kim, Ki-Tae
    • Journal of Environmental Health Sciences
    • /
    • v.41 no.5
    • /
    • pp.305-313
    • /
    • 2015
  • Objectives: The objective of this study is to identify toxicants causing acute toxicity in effluents from the aluminum rolling industry that violate the discharge limits in Korea. Methods: Whole effluent toxicity tests (WET) were conducted on effluent discharged from the aluminum rolling industry following the US EPA WET test methods. We collected effluent samples three times and evaluated acute toxicity by using Daphnia magna. We employed toxicity identification evaluation (TIE) procedures to identify toxicants causing toxicity in the effluent. Results: No specific chemical groups were identified in the seven different manipulations applied to the of wastewater effluent samples showing 1.3 toxic units (TU) according to the TIE phase I procedures. Water quality parameters for water hardness, electric conductivity and heavy metals (Mn) were 4,322 mg/l as $CaCO_3$, 11.39 mS/cm, and $5,551{\mu}g/l$, respectively. Considering water hardness and reference toxicity, high concentrations of Mn can be disqualified from the causative toxicants. Consequently, high ionic concentrations of $Na^+$(1,648 mg/l), $Ca^{2+}$(1,048 mg/l), $Mg^{2+}$(1,428 mg/l) and $SO_4{^{2-}}$(7,472 mg/l) were identified to be causative toxicants. Water hardness and electric conductivity exceed the $EC_{50}$ value obtained by biological toxicity tests using Daphnia magna. Conclusion: According to TIE procedures, high salt concentration is determined to be a major toxicant in the effluent of agro-industrial wastewater treatment plants receiving wastewater from the aluminum rolling industry.

Study on the Characteristics of Infinite Slope Failures by Probabilistic Seepage Analysis (확률론적 침투해석을 통한 무한사면 파괴의 특성 연구)

  • Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.10
    • /
    • pp.5-18
    • /
    • 2014
  • Many regions around the world are vulnerable to rainfall-induced slope failures. A variety of methods have been proposed for revealing the mechanism of slope failure initiation. Current analysis methods, however, do not consider the effects of non-homogeneous soil profiles and variable hydraulic responses on rainfall-induced slope failures. In this study, probabilistic stability analyses were conducted for weathered residual soil slopes with different soil thickness overlying impermeable bedrock to study the rainfall-induced failure mechanisms depending on the soil thickness. A series of seepage and stability analyses of an infinite slope based on one-dimensional random fields were performed to consider the effects of uncertainty due to the spatial heterogeneity of hydraulic conductivity on the failure of unsaturated slopes due to rainfall infiltration. The results showed that a probabilistic framework can be used to efficiently consider various failure patterns caused by spatial variability of hydraulic conductivity in rainfall infiltration assessment for a infinite slope.

A Study on the System Integrity of Gas Pipeline by High Voltage Power Line in Submarine Tunnel (절점망 해석프로그램을 이용한 해저터널 내 고전압 전력케이블에 의한 가스배관의 안전성 평가 연구)

  • Bae Jeong-Hyo,;Ha Tae-Hyun,;Lee Hyun-Goo,;Kim Dae-Kyeong,
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.4 s.16
    • /
    • pp.21-26
    • /
    • 2001
  • Because of the continuous growth of energy consumption, and also tile tendency to site power lines and pipelines along the same routes, the close proximity of high voltage structures and metallic pipelines has become more and more frequent. Recently, the results of assessment about a system integrity are needed in korea also when a gas pipeline is running parallel with high voltage power line in same submarine tunnel, Therefore, we analyze the system integrity(AC corrosion of pipe, melting of pipeline coating, safety of insulation flange, especially cathodic protection system which are rectifier and CI(cathodic Isolator)) resulting from the influence of high voltage power system.

  • PDF

Thermal-hydro-mechanical Properties of Reference Bentonite Buffer for a Korean HLW Repository (우리나라 고준위폐기물처분장 기준벤토나이트완충재의 열-수리-역학적 특성치)

  • Lee, Jae-Owan;Cho, Won-Jin;Kwon, Sang-Ki
    • Tunnel and Underground Space
    • /
    • v.21 no.4
    • /
    • pp.264-273
    • /
    • 2011
  • Bentonite buffer is one of the major components of an engineered barrier for an HLW (High-Level Waste) repository. The bentonite buffer is significantly exposed to the decay heat from radioactive wastes, the inflow of groundwater from the surrounding rock of the repository, and the high swelling pressure of densely-compacted bentonite that comes in contact with the groundwater. Therefore, it is essential to understand the THM (Thermal-Hydro-Mechanical) behavior of the bentonite buffer and to acquire the input data of its related constitutive models for the performance and safety assessment of an HLW repository. This paper analyzed the THM properties which have been obtained by conducting laboratory tests with a candidate buffer material for a Korean HLW repository. Moreover the formulation recipe of the reference bentonite buffer was defined on the basis of functional criteria, thus suggesting the THM properties which correspond to the formulation recipe of the reference bentonite buffer.

Axial load detection in compressed steel beams using FBG-DSM sensors

  • Bonopera, Marco;Chang, Kuo-Chun;Chen, Chun-Chung;Lee, Zheng-Kuan;Tullini, Nerio
    • Smart Structures and Systems
    • /
    • v.21 no.1
    • /
    • pp.53-64
    • /
    • 2018
  • Nondestructive testing methods are required to assess the condition of civil structures and formulate their maintenance programs. Axial force identification is required for several structural members of truss bridges, pipe racks, and space roof trusses. An accurate evaluation of in situ axial forces supports the safety assessment of the entire truss. A considerable redistribution of internal forces may indicate structural damage. In this paper, a novel compressive force identification method for prismatic members implemented using static deflections is applied to steel beams. The procedure uses the Euler-Bernoulli beam model and estimates the compressive load by using the measured displacement along the beam's length. Knowledge of flexural rigidity of the member under investigation is required. In this study, the deflected shape of a compressed steel beam is subjected to an additional vertical load that was short-term measured in several laboratory tests by using fiber Bragg grating-differential settlement measurement (FBG-DSM) sensors at specific cross sections along the beam's length. The accuracy of midspan deflections offered by the FBG-DSM sensors provided excellent force estimations. Compressive load detection accuracy can be improved if substantial second-order effects are induced in the tests. In conclusion, the proposed method can be successfully applied to steel beams with low slenderness under real conditions.

A Study on Assessment Techniques of Levee Safety (하천제방의 안전성 평가기법 연구)

  • Yoon Jong-Ryeol;Kim Jin-Man;Choi Bong-Hyuck
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.111-116
    • /
    • 2005
  • 2-D and 3-D resistivity surveys were carried out at the Deok-In2 levee during the period of arid and rainy seasons to assess the waterproof effectiveness of sheet pile and grouting sections and detect the location of pipings. Inverted resistivity sections clearly indicated the boundaries of sheet pile and grouting sections and the locations of pipings observed at the ground surface. Besides, GPR survey was carried out to verify the rear cavity of culvert in levee which is thought to be the major cause of levee breakdown, But the quality of GPR data was very poor due to the steel reinforcements buried in the culvert. Because it is not easy to apply various geophysical surveys upon concrete structures, newly designed hydraulic response test was proposed to assess the continuity of rear cavity of culvert in this study.

  • PDF

Study on the Assessment of Dose Equivalent due to the Inhalation of $^{222}Rn$ and Its Daughters in Indoor Air (실내 $^{222}Rn$$^{222}Rn$ 딸핵종에 의한 피폭선량 해석연구)

  • Jun, Jae-Shik;Chai, Ha-Seok;Yi, Chul-Young;Cho, Hyuck;Ha, Chung-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.20 no.1
    • /
    • pp.16-24
    • /
    • 1995
  • Assesment of dose equivalent given by inhaled $^{222}Rn$ and its progeny has been carried out based on the concentrations of $^{222}Rn$ and its daughters in indoor air, and equilibrium factor between them measured by charcoal canister method and alpha spectrometry. Assuming the occupancy factor to be 0.8, and breathing rate to be $0.75m^3\;h^{-1}$ for public and $1.2m^3\;h^{-1}$ for occupational exposure, respectively, the regional lung dose 대valent and the resulting annual effective dose equivalent due to the inhalation of $^{222}Rn$ and its daughters in indoor air were evaluated by use of three different lung models, namely, Jacobi-Eisfeld, James-Birchall and ICRP model.

  • PDF

A Study on Proposal of the Ship's Routing on Kwangyang Harbor (광양항의 항로설정에 관한 연구)

  • Jeong, Jung-Shic;Park, Young-Soo;Jong, Jae-Yong;Kim, Chol-Seong;Yang, Won-Jae
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.29 no.1
    • /
    • pp.213-221
    • /
    • 2005
  • In the present maritime traffic conditions of Gwangyang harbor, there exists many hazardous factors which may lead to huge accidents including marine oil pollution. To mitigate the danger to vessels in Gwangyang harbor and to secure the safety of maritime environment, we established one way traffic between No.3 Route and No.4 Route, Designed of deep water line on No.3 route, Extended one-way route for Myo-Do Passage etc.

  • PDF