• Title/Summary/Keyword: ascending chain condition on principal ideals

Search Result 2, Processing Time 0.015 seconds

Composite Hurwitz Rings Satisfying the Ascending Chain Condition on Principal Ideals

  • Lim, Jung Wook;Oh, Dong Yeol
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.4
    • /
    • pp.1115-1123
    • /
    • 2016
  • Let $D{\subseteq}E$ be an extension of integral domains with characteristic zero, I be a nonzero proper ideal of D and let H(D, E) and H(D, I) (resp., h(D, E) and h(D, I)) be composite Hurwitz series rings (resp., composite Hurwitz polynomial rings). In this paper, we show that H(D, E) satisfies the ascending chain condition on principal ideals if and only if h(D, E) satisfies the ascending chain condition on principal ideals, if and only if ${\bigcap}_{n{\geq}1}a_1{\cdots}a_nE=(0)$ for each infinite sequence $(a_n)_{n{\geq}1}$ consisting of nonzero nonunits of We also prove that H(D, I) satisfies the ascending chain condition on principal ideals if and only if h(D, I) satisfies the ascending chain condition on principal ideals, if and only if D satisfies the ascending chain condition on principal ideals.

ARCHIMEDEAN SKEW GENERALIZED POWER SERIES RINGS

  • Moussavi, Ahmad;Padashnik, Farzad;Paykan, Kamal
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.2
    • /
    • pp.361-374
    • /
    • 2019
  • Let R be a ring, ($S,{\leq}$) a strictly ordered monoid, and ${\omega}:S{\rightarrow}End(R)$ a monoid homomorphism. In [18], Mazurek, and Ziembowski investigated when the skew generalized power series ring $R[[S,{\omega}]]$ is a domain satisfying the ascending chain condition on principal left (resp. right) ideals. Following [18], we obtain necessary and sufficient conditions on R, S and ${\omega}$ such that the skew generalized power series ring $R[[S,{\omega}]]$ is a right or left Archimedean domain. As particular cases of our general results we obtain new theorems on the ring of arithmetical functions and the ring of generalized power series. Our results extend and unify many existing results.