Browse > Article
http://dx.doi.org/10.4134/CKMS.c180063

ARCHIMEDEAN SKEW GENERALIZED POWER SERIES RINGS  

Moussavi, Ahmad (Department of Pure Mathematics Faculty of Mathematical Sciences Tarbiat Modares University)
Padashnik, Farzad (Department of Pure Mathematics Faculty of Mathematical Sciences Tarbiat Modares University)
Paykan, Kamal (Department of Mathematics, Garmsar Branch Islamic Azad University)
Publication Information
Communications of the Korean Mathematical Society / v.34, no.2, 2019 , pp. 361-374 More about this Journal
Abstract
Let R be a ring, ($S,{\leq}$) a strictly ordered monoid, and ${\omega}:S{\rightarrow}End(R)$ a monoid homomorphism. In [18], Mazurek, and Ziembowski investigated when the skew generalized power series ring $R[[S,{\omega}]]$ is a domain satisfying the ascending chain condition on principal left (resp. right) ideals. Following [18], we obtain necessary and sufficient conditions on R, S and ${\omega}$ such that the skew generalized power series ring $R[[S,{\omega}]]$ is a right or left Archimedean domain. As particular cases of our general results we obtain new theorems on the ring of arithmetical functions and the ring of generalized power series. Our results extend and unify many existing results.
Keywords
skew generalized power series ring; strictly ordered monoid; Archimedean ring;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 D. D. Anderson, D. F. Anderson, and M. Zafrullah, Factorization in integral domains, J. Pure Appl. Algebra 69 (1990), no. 1, 1-19.   DOI
2 H. Bass, Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95 (1960), 466-488.   DOI
3 P. M. Cohn, Free Rings and Their Relations, second edition, London Mathematical Society Monographs, 19, Academic Press, Inc., London, 1985.
4 T. Dumitrescu, S. O. I. Al-Salihi, N. Radu, and T. Shah, Some factorization properties of composite domains A + XB[X] and A + XB[[X]], Comm. Algebra 28 (2000), no. 3, 1125-1139.   DOI
5 G. A. Elliott and P. Ribenboim, Fields of generalized power series, Arch. Math. (Basel) 54 (1990), no. 4, 365-371.   DOI
6 D. Frohn, A counterexample concerning ACCP in power series rings, Comm. Algebra 30 (2002), no. 6, 2961-2966.   DOI
7 D. Frohn, Modules with n-acc and the acc on certain types of annihilators, J. Algebra 256 (2002), no. 2, 467-483.   DOI
8 D. Jonah, Rings with the minimum condition for principal right ideals have the maximum condition for principal left ideals, Math. Z. 113 (1970), 106-112.   DOI
9 T. Y. Lam, A First Course in Noncommutative Rings, Graduate Texts in Mathematics, 131, Springer-Verlag, New York, 1991.
10 Z. Liu, Endomorphism rings of modules of generalized inverse polynomials, Comm. Algebra 28 (2000), no. 2, 803-814.   DOI
11 Z. Liu, The ascending chain condition for principal ideals of rings of generalized power series, Comm. Algebra 32 (2004), no. 9, 3305-3314.   DOI
12 Z. Liu, Triangular matrix representations of rings of generalized power series, Acta Math. Sin. (Engl. Ser.) 22 (2006), no. 4, 989-998.   DOI
13 G. Marks, R. Mazurek, and M. Ziembowski, A new class of unique product monoids with applications to ring theory, Semigroup Forum 78 (2009), no. 2, 210-225.
14 G. Marks, R. Mazurek, and M. Ziembowski, A unified approach to various generalizations of Armendariz rings, Bull. Aust. Math. Soc. 81 (2010), no. 3, 361-397.   DOI
15 R. Mazurek, Left principally quasi-Baer and left APP-rings of skew generalized power series, J. Algebra Appl. 14 (2015), no. 3, 1550038, 36 pp.   DOI
16 R. Mazurek and K. Paykan, Simplicity of skew generalized power series rings, New York J. Math. 23 (2017), 1273-1293.
17 R. Mazurek and M. Ziembowski, On von Neumann regular rings of skew generalized power series, Comm. Algebra 36 (2008), no. 5, 1855-1868.   DOI
18 R. Mazurek and M. Ziembowski, The ascending chain condition for principal left or right ideals of skew generalized power series rings, J. Algebra 322 (2009), no. 4, 983-994.   DOI
19 A. R. Nasr-Isfahani, The ascending chain condition for principal left ideals of skew polynomial rings, Taiwanese J. Math. 18 (2014), no. 3, 931-941.   DOI
20 A. Moussavi and K. Paykan, Zero divisor graphs of skew generalized power series rings, Commun. Korean Math. Soc. 30 (2015), no. 4, 363-377.   DOI
21 K. Paykan and A. Moussavi, Baer and quasi-Baer properties of skew generalized power series rings, Comm. Algebra 44 (2016), no. 4, 1615-1635.   DOI
22 K. Paykan and A. Moussavi, Quasi-Armendariz generalized power series rings, J. Algebra Appl. 15 (2016), no. 5, 1650086, 38 pp.   DOI
23 K. Paykan and A. Moussavi, Semiprimeness, quasi-Baerness and prime radical of skew generalized power series rings, Comm. Algebra 45 (2017), no. 6, 2306-2324.   DOI
24 K. Paykan and A. Moussav, Some results on skew generalized power series rings, Taiwanese J. Math. 21 (2017), no. 1, 11-26.   DOI
25 K. Paykan and A. Moussav, McCoy property and nilpotent elements of skew generalized power series rings, J. Algebra Appl. 16 (2017), no. 10, 1750183, 33 pp.   DOI
26 K. Paykan and A. Moussav, Nilpotent elements and nil-Armendariz property of skew generalized power series rings, Asian-Eur. J. Math. 10 (2017), no. 2, 1750034, 28 pp.   DOI
27 P. Ribenboim, Special properties of generalized power series, J. Algebra 173 (1995), no. 3, 566-586.   DOI
28 P. B. Sheldon, How changing D[[x]] changes its quotient field, Trans. Amer. Math. Soc. 159 (1971), 223-244.   DOI
29 P. Ribenboim, Some examples of valued fields, J. Algebra 173 (1995), no. 3, 668-678.   DOI
30 P. Ribenboim, Semisimple rings and von Neumann regular rings of generalized power series, J. Algebra 198 (1997), no. 2, 327-338.   DOI