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ARCHIMEDEAN SKEW GENERALIZED POWER
SERIES RINGS

AHMAD MOUSSAVI, FARZAD PADASHNIK, AND KAMAL PAYKAN

ABSTRACT. Let R be aring, (S, <) astrictly ordered monoid, and w : S —
End(R) a monoid homomorphism. In [18], Mazurek, and Ziembowski
investigated when the skew generalized power series ring R[[S,w]] is a
domain satisfying the ascending chain condition on principal left (resp.
right) ideals. Following [18], we obtain necessary and sufficient conditions
on R, S and w such that the skew generalized power series ring R[S, w]]
is a right or left Archimedean domain. As particular cases of our general
results we obtain new theorems on the ring of arithmetical functions and
the ring of generalized power series. Our results extend and unify many
existing results.

1. Introduction

Throughout this paper all monoids and rings are with identity element that
is inherited by submonoids and subrings and preserved under homomorphisms,
but neither monoids nor rings are assumed to be commutative.

A commutative ring R is said to satisfy the ascending chain condition for
principal ideals (ACCP), if there does not exist an infinite strictly ascending
chain of principal ideals of R (see, for example, Dumitrescu et al. [4] or Frohn,
[7]). The ACCP is also called 1-ACC in Frohn [6]. In Anderson et al. [1]
and Dumitrescu et al. ([4, Proposition 1.2]), the authors gave a necessary and
sufficient condition under which the rings A+ X B[[X]] and A + X B[X] satisfy
ACCP where A C B are domains and X is an indeterminate.

A ring R is said to satisfy the ascending chain condition on principal left
ideals (ACCPL) if there does not exist an infinite strictly ascending chain of
principal left ideals of R. Rings satisfying the ascending chain condition on
principal right ideals (ACCPR) are defined analogously. Obvious examples of
rings satisfying ACCPL are left Noetherian rings. Also every left perfect ring
satisfies ACCPL, since by a celebrated theorem of Bass (see [2]) the left perfect
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condition is equivalent to the descending chain condition on principal right
ideals, which in turn implies ACCPL, by Jonah’s theorem from [8].

A ring R is said to be right Archimedean if (), .y Rr™ = 0 for each nonunit
element r € R. Left Archimedean rings are defined similarly. Commutative
Archimedean domains are studied in [30], where the author proves that if R
is a commutative domain, a € R and (,cya'R = 0, then the quotient field
Q(R[[z/a]]) has infinite transcendent degree over the quotient field Q(R[[z]]). It
is well-known that any commutative domain satisfying ACCP is Archimedean,
but the converse is not true (see, for example, Dumitrescu et al. [4, p. 1127]).

In [17] a common generalization of the skew power series ring and the
Mal’cev-Neumann ring constructions was introduced, the ring of skew gener-
alized power series R[[S,w]], where R is a ring, S is a strictly ordered monoid,
w: S — End(R) is a monoid homomorphism, and the pointwise addition and
the skew convolution multiplication are performed on the set of all functions
from S to R whose support is artinian and narrow (see Section 2 for particu-
larities). Special cases of the construction are polynomial rings, monoid rings,
skew polynomial rings, skew Laurent polynomial rings, skew monoid rings, skew
power series rings, skew Laurent series rings, the Mal’cev-Neumann construc-
tion (see [3, p. 528]), the Mal’cev-Neumann construction of twisted Laurent
series rings (see [9, p. 242]), generalized power series rings (see [29, Section 4]),
and twisted generalized power series rings (see [12, Section 2]). Hence any re-
sult on skew generalized power series rings has its counterpart for each of these
particular ring extensions, and these counterparts follow immediately from a
single proof. This property makes skew generalized power series rings a useful
tool for unifying results on the ring extensions listed above; such an approach
was applied, e.g., in [14-19,21-26].

In [18], Mazurek, and Ziembowski studied when the skew generalized power
series ring R[[S,w]] satisfies the ascending chain condition on principal left
(resp. right) ideals. Also, Nasr-Isfahani in [20], obtained characterizations of
skew polynomial rings and skew power series rings that are ACCPL-domains
or Archimedean domains. Motivated by results in [18] and [20], we obtain
necessary and sufficient conditions on R, S and w such that the skew generalized
power series ring R[[S,w]] is a right (resp. left) Archimedean domain.

The paper is organized as follows. In Section 2 we recall the construction of
a skew generalized power series ring R][[S, w]] and show how the aforementioned
ring extensions can be obtained as special cases of the construction. In Section 3
we study what can be said about a ring R, a strictly ordered monoid (S, <) and
a monoid homomorphism w : S — End(R) such that the skew generalized power
series ring R[[S,w]] is a right or left Archimedean domain. In Section 4 we prove
that if the monoid S is strictly artinian totally ordered or S is commutative
torsion-free cancellative artinian semisubtotally ordered, then the ring R[[S, w]]
of skew generalized power series with coefficients in R and exponents in S is a
right Archimedean domain if and only if R is a right Archimedean domain and
each w(s) is injective and preserves nonunits of R for any s € S (see Theorems
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4.1 and 4.7). In particular, we obtain characterizations of power series rings,
skew power series rings, the ring of arithmetical functions and generalized power
series rings, that are right or left Archimedean domains (see Corollaries 4.4,
4.5 and 4.9). Finally, we pose natural open problems (Questions 4.2 and 4.8)
on right (resp. left) Archimedean skew generalized power series domains.

We will denote by End(R) the monoid of ring endomorphisms of R, and by
Aut(R) the group of ring automorphisms of R. If S is a monoid or a ring, then
the group of invertible elements of S is denoted by U(.S). When we consider an
ordering relation < on a set S, then the word “order” means a partial ordering
unless otherwise stated. The order < is total (respectively trivial) if any two
different elements of S are comparable (respectively incomparable) with respect
to <. We will use the symbol 1 to denote the identity elements of the monoid .S,
the ring R, and the ring R[[S, w]], as well as the trivial monoid homomorphism
1:S8 — End(R) that sends every element of S to the identity endomorphism.
Also we use Z, N, Q and R for the integers, positive integers, rational numbers
and the field of real numbers, respectively.

2. Preliminaries

A partially ordered set (S, <) is called artinian if every strictly decreasing
sequence of elements of S is finite, and (.5, <) is called narrow if every subset
of pairwise order-incomparable elements of S is finite. Thus, (5, <) is artinian
and narrow if and only if every nonempty subset of S has at least one but
only a finite number of minimal elements. An ordered monoid is a pair (S, <)
consisting of a monoid .S and an order < on S such that for all a,b,c € S, a <b
implies ca < ¢b and ac < be. An ordered monoid (S, <) is said to be strictly
ordered if for all a,b,c € S, a < b implies ca < ¢b and ac < bc.

For a strictly ordered monoid S and a ring R, Ribenboim [29] defined the
ring of generalized power series R[[S]] consisting of all maps from S to R whose
support is artinian and narrow with the pointwise addition and the convolution
multiplication. This construction provided interesting examples of rings (e.g.,
Elliott and Ribenboim [5]; Ribenboim [27,28]) and it was extensively studied
by many authors.

In [17], Mazurek and Ziembowski, introduced a “twisted” version of the
Ribenboim construction and studied when it produces a von Neumann regular
ring. Now we recall the construction of the skew generalized power series ring
introduced in [17]. Let R be a ring, (S, <) a strictly ordered monoid, and
w: S — End(R) a monoid homomorphism. For s € S, let ws denote the image
of s under w, that is ws = w(s). Let A be the set of all functions f : S — R
such that the support supp(f) = {s € S : f(s) # 0} is artinian and narrow.
Then for any s € S and f,g € A the set

X(f,9) = {(z,y) € supp(f) x supp(g) : s = zy}
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is finite. Thus one can define the product fg: S — R of f,g € A as follows:

fas) = Y fwwu(g(v))

(uv)EXs(f.9)

(by convention, a sum over the empty set is 0). With pointwise addition and
multiplication as defined above, A becomes a ring, called the ring of skew
generalized power series with coefficients in R and exponents in S (one can
think of a map f : S — R as a formal series ) _¢7ss, where r; = f(s) € R)
and denoted either by R[[S<,w]], or by R[[S,w,<]], or by R[[S,w]] (see [14]
and [17]).

To each r € R and s € S, we associate elements c,, es € R[[S,w]] defined by

r x=1, 1 x=s,
Cr(f”){o ze S\ {1}, es(f“){o re S\ {s}.

It is clear that r — ¢, is a ring embedding of R into R[[S,w]] and s — ey is
a monoid embedding of S into the multiplicative monoid of the ring R[[S,w]],
and esc, = ¢y, (r)€s-

Below we quote from [15], how the classical constructions mentioned in Sec-
tion 1 can be viewed as special cases of the skew generalized power series ring
construction.

Let R be a ring and ¢ an endomorphism of R. Then for the additive monoid
S =NU{0} of nonnegative integers, the map w : S — End(R) given by

(2.1) w(n)=o0" foranyn €S,

is a monoid homomorphism. If furthermore ¢ is an automorphism of R, then
(2.1) defines also a monoid homomorphism w : S — Aut(R) for S = Z, the
additive monoid of integers. We can consider two different orders on each of
the monoids N U {0} and Z: the trivial order and the natural linear order. In
both cases these monoids are strictly ordered, and thus in each of the cases we
can construct the skew generalized power series ring R[[S,w]]. As a result, we
obtain the following extensions of the ring R:

(1) If S = NU {0} and < is the trivial order, then the ring R[[S,w]] is
isomorphic to the skew polynomial ring R[z,o].

(2) If S = NU{0} and < is the natural linear order, then R[[S,w]] is
isomorphic to the skew power series ring R[[z; o]

(3) If S = Z and < is the trivial order, and ¢ is an automorphism of
R, then R[[S,w]] is isomorphic to the skew Laurent polynomial ring
Rl[z,z71;0].

(4) If S = Z and < is the natural linear order, and ¢ is an automor-
phism of R, then R[[S,w]] is isomorphic to the skew Laurent series ring
R[[z, 271 o).

By applying the above points (1)-(4) to the case where o is the identity map
of R, we can see that also the following ring extensions are special cases of the
skew generalized power series ring construction: the ring of polynomials R[z],
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the ring of power series R[[z]], the ring of Laurent polynomials R[z,x~!], and
the ring of Laurent series R[[z,z~!]].

Furthermore, any monoid S is a strictly ordered monoid with respect to the
trivial order on S. Hence if R is a ring, S is a monoid and w : S — End(R)
is a monoid homomorphism, then we can impose the trivial order on S and
construct the skew generalized power series ring R[[S,w]], which in this case
will be denoted by R[S,w]. It is clear that the ring R[S,w] is isomorphic to
the classical skew monoid ring built from R and S using the action w of S on
R. If w is trivial, we write R[S] instead of R[S,w]. Obviously the ring R[S] is
isomorphic to the ordinary monoid ring of S over R.

Also, the construction of skew generalized power series rings generalizes an-
other classical ring constructions such as the Mal’cev-Neumann Laurent series
rings ((5, <) a totally ordered group and trivial w; see [3, p. 528]), the Mal’cev-
Neumann construction of twisted Laurent series rings ((.5, <) a totally ordered
group; see [9, p. 242]), generalized power series rings R[[S]] (trivial w; see
[29, Section 4]), and twisted generalized power series rings (see [12, Section 2]
and [17]).

We now recall some facts about units of skew generalized power series rings,
which will be used later on in this paper.

Recall from [29] that an order < on a monoid S is said to be subtotal if for
any s,t € S there exists n € N such that s™ < t" or t" < s™. A total order
on a monoid is clearly subtotal, but the converse need not be true (see e.g.
[18, Example 3.8] or [29, p. 371]).

From [18], an order < on a monoid S is said to be semisubtotal if for any
s € S there exists n € N such thats s™ > 1 or s < 1. If (5,-, <) is an ordered
monoid and < is semisubtotal, then we will say that (S, -, <) is semisubtotally
ordered. An ordered monoid (5, <) is called positively ordered if 1 < s for any
s € S. Tt is also clear that any positively ordered monoid is semisubtotally
ordered. If (S, <) is an ordered abelian group, then the order < is semisubtotal
if and only if it is subtotal.

Recall that a monoid S is said to be torsion-free if for any n € Nand s,t € S,
s™ = t" implies s = t. It is easy to see that if (5, <) is an ordered torsion-free
commutative monoid such that < is subtotal, then the binary relation < on S
defined by

s <t if and only if s" <" for some n €N

is a total order on S and (S, <) is an ordered monoid. The order < will be
called the total order associated with <. Clearly, s < ¢ implies s < ¢ for any
s,t € S, and thus by [18, Proposition 1.1], if a subset T of S is artinian and
narrow with respect to <, then T is well-ordered with respect to <. Hence
for any f € RJ[[S,w]] \ {0} there exists a smallest element s of supp(f) with
respect to =, which will be denoted by 7(f).

To characterize skew generalized power series rings that are Archimedean
domains, we will need the following results, which play a key role in the sequel.
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Proposition 2.1 ([17, Proposition 2.2]). Let R be a ring, (S,<) a strictly
ordered monoid, w : S — End(R) a monoid homomorphism and A = R[[S, w]].
Let f € A and assume that there exists a smallest element sq in supp(f). If

so € U(S) and f(so) € U(R), then f € U(A).

Proposition 2.2 ([18, Proposition 3.12]). Let R be a domain, (S,-, <) a com-
mutative torsion-free cancellative semisubtotally ordered monoid, w : S —
End(R) a monoid homomorphism and A = R][[S,w,<]]. Assume that ws is
injective for any s € S. Let = be a total order associated with <,and let
B = R[[S,w,=X]]. Then A is a subring of B and U(A) = ANU(B).

3. Necessary conditions for the ring R[[S,w]] to be a right or left
Archimedean domain

In this section we study what can be said about a ring R, a strictly or-
dered monoid (5, <) and a monoid homomorphism w : S — End(R) such that
the skew generalized power series ring R[[S,w]] is a right or left Archimedean
domain. A monoid (.5, -) is said to satisfy the ascending chain condition on prin-
cipal left ideals (ACCPL) if there does not exist an infinite strictly ascending
chain of principal left ideals of S. Analogously monoids satisfying the ascending
chain condition on principal right ideals (ACCPR) are defined. Monoids that
satisfy ACCPL (resp. ACCPR) will be called ACCPL-monoids (resp. ACCPR-
monoids). In [18, Example 2.6], the authors showed that ACCPL and ACCPR
are independent conditions.

Proposition 3.1 ([18, Proposition 2.1]). For any cancellative monoid S, the
following are equivalent:

(1) S satisfies ACCPL.

(2) For any sequences (an)nen, (bn)nen of elements of S such that a,, =
bpan+1 for alln € N, there exists m € N with b, € U(S) for alln > m.

(3) For any sequences (an)nen, (bn)nen of elements of S such that a, =
bnant1 for alln € N, there exists m € N with b, € U(S).

(4) Npen 5152525 = 0 for any sequence (sn)nen of nonunits of S.

A monoid (S, ) is said to be a left Archimedean monoid if [, ¢ s™S = () for
each nonunit element s of S. Right Archimedean monoids may be defined anal-
ogously. Obviously, any group, the multiplicative monoid N and the additive
monoid NU {0} are Archimedean.

The following result is an immediate consequence of Proposition 3.1.

Proposition 3.2. Let S be a monoid satisfying ACCPL. If S is cancellative,
then S is left Archimedean.

The following example shows that in Proposition 3.2 the cancellative con-
dition on monoid S is not superfluous. This example shows also that a finite
monoid need not be left Archimedean.
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Example 3.3. Let S be a monoid generated by = with the defining relation
2* =x. Then S = {1,z}, x € U(S) and = € [, oy 2" S. Obviously, the monoid
S satisfies ACCPL, but it is not left Archimedean.

Remark 3.4. [11, Example 2.5] shows that the converse of Proposition 3.2 is
not true in general.

Proposition 3.5. Let T be a submonoid of a monoid S such that U(T) =
TNU(S). If S is a left Archimedean monoid, then T is a left Archimedean
monoid.

Proof. The proof is clear. O

Proposition 3.6. Let {S;}icr be a family of monoids indexed by a nonempty
set 1. Then the cartesian product S = [[;c;Si of the monoids S; is left
Archimedean if and only if each monoid S; is left Archimedean.

Proof. Suppose that every S; is a left Archimedean monoid and ¢ = (¢;);¢s is in
Mnen ™9, where s is a nonunit element of S. Then t = s"v,, for some v,, €
and for all n € N. Write s = (s;)ier and v, = (vin)icr. Then t; = sTv;, for all
i€ Iandn € N. Thus t; € ), oy siS; for all i € I. Since s ¢ U(S), it follows
that there exists j € I such that s; ¢ U(S;). Therefore (N, oy 57S; = 0, since
S; is a left Archimedean monoid. This is a contradiction. Thus [,y s™S = 0.
Hence S is a left Archimedean monoid. Conversely, assume that S is a left
Archimedean monoid. Then by Proposition 3.5, every S; is a left Archimedean
monoid. (]

Applying Proposition 3.6 to a family S7, S2, ... of commutative monoids, we
obtain [11, Lemma 2.6].

Corollary 3.7. Let Sq1,59,...,5, be monoids. Then S1 X So X -+ X S, is a
left Archimedean monoid if and only if every S; is a left Archimedean monoid.

We will say that an endomorphism « of a ring R preserves nonunit elements
of Rif «(R\U(R)) C R\U(R).

Theorem 3.8. Let R be a ring, (S,<) a strictly ordered monoid and w: S —
End(R) a monoid homomorphism. If R[[S,w]] is a right Archimedean domain,
then:

(i) R is a right Archimedean domain.
(ii) S is a right Archimedean monoid.
(iii) ws is injective and preserves nonunits of R for any s € S.

Proof. (i) Since R is a subring of R[[S,w]], R is a domain. Now, let a be a
nonunit element of R and b € [,y Ra™. Then ¢, € ),y R[[S,w]](ca)™ and
it is clear that ¢, is a nonunit element of R[[S,w]]. This implies that ¢, = 0.
Thus b = 0. Therefore R is a right Archimedean domain.
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(ii) Let s € S\ U(S) and suppose t € [, . 55™. Then

neN

e, € () Bl <] (e.)"
neN

and it is obvious that e, is a nonunit element of R[[S,w]]. This implies that
e; = 0. Hence 0 = e4(t) = 1, and this contradiction completes the proof of (ii).

(iii) Let s € S. To prove that ws is injective, we repeat the argument of the
first part of the proof of [13, Proposition 3.2]. Suppose that wy is not injective.
Choose a € R\ {0} such that wy(a) = 0. Then for the nonzero elements e;, ¢,
of the domain R[S, w]] we obtain esc, = ¢, (a)€s = 0, a contradiction. Now,
suppose that ws, (1) € U(R) for some so € S and a nonunit element r of R. For
all n € N define f,, € R[[S,w]] by f. = Cway (1)~ €so- Clearly ey, = Sfuler)™
for any n € N. Consequently ey, € (), oy R[[S,w]](c;)". This contradiction
completes the proof of part (iii). O

Theorem 3.9. Let R be a ring, (S,<) a strictly ordered monoid and w: S —
End(R) a monoid homomorphism. If R[[S,w]] is a left Archimedean domain,
then:

(1) R is a left Archimedean domain.
(2) S is a left Archimedean monoid.
(3) ws is injective for any s € S.

Proof. The proof is similar to the proof of Theorem 3.8. O

4. Archimedean domains of skew generalized power series

In this section we study when the skew generalized power series ring R[[S, w]]
is a right (resp. left) Archimedean domain. We first consider the case when S
is artinian and the order < is total (Theorem 4.1), and next the case when S is
commutative torsion-free cancellative artinian and the order < is semisubtotal
(Theorem 4.7).

Theorem 4.1. Let R be a ring, (S,<) an artinian strictly totally ordered
monoid and w : S — End(R) a monoid homomorphism.

(i) The ring R[[S,w]] is a right Archimedean domain if and only if R is a
right Archimedean domain, ws is injective and preserves nonunits of R
forany s e S.

(ii) R[[S,w]] is a left Archimedean domain if and only if R is a left Archi-
medean domain and ws is injective for any s € S.

Proof. (i) Set A = R[[S,w]]. Assume that R is a right Archimedean domain,
ws is injective and preserves nonunits of R for any s € S. It is clear that A
is a domain, by [18, Proposition 3.1(ii)]. Assume to the contrary that f is
a nonunit element of A for which there is a nonzero element g in (), oy Af".
Then for each n € N there exists h, € A such that g = h,f". Using [18,
Proposition 3.1(1)], we get 7(g) = w(hy)7(f™) and w(f™) = (x(f))™ for any
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n € N, since R is a domain and w, is injective for any s € S. So g(n(g)) =
n(ﬂ(hn))wﬁ(hn (f™(m(f™))). There are three cases.
Case 1. First, let w(f) = 1. Hence by using again [18, Proposition 3.1(i)],

w(g) = 7(hn), glr(g)) = ha(7(9))wr(g) (f"(1)) and f7(1) = (f(1))" for each

n € N. Therefore, we obtain:

9(m(9)) = ha(7(9)) (Wr(g) (F(1)))" € R (wr(g) (f(1)))" for any n € N.

This yields that g((g)) € Nyen R (Wr(g) (f(l)))". Also f(1) is not a unit, oth-
erwise 1 and f(1) would be both units and f will be a unit of A, by Proposition
2.1. Since wy(4) preserves nonunit elements of R, wx(4)(f(1)) is not a unit of R.
Since R is right Archimedean, it follows that g(7(g)) = 0, which contradicts
the fact that 7(g) € supp(g).

Case 2. w(f) > 1. We know that m(g9) = m(h,)(7(f))" for any n € N.
So w(hy) < m(hp—1) for each n. Thus {7(hy)}nen forms an infinite strictly
descending chain of elements of .S, which is a contradiction.

Case 3. Now, assume that 7(f) < 1. Hence (7(f))" < (7(f))"! for any
n. Thus {(7(f))"}nen forms an infinite strictly descending chain of elements
of S. This is also a contradiction. Consequently g = 0 and the result follows.

Conversely, if A is a right Archimedean domain, then R is a right Archi-
medean domain, w; is injective and preserves nonunits of R for any s € S by
Theorem 3.8.

(ii) The proof is similar to the proof of part (i). O

From the preceding results, it is natural to raise the following question.

Question 4.2. Let R be a ring, (S,<) a strictly totally ordered monoid and
w: S — End(R) a monoid homomorphism.

(i) Is it true that the ring R[[S,w]] is a right Archimedean domain if and
only if R is a right Archimedean domain, S is a right Archimedean
monoid, ws is injective and preserves nonunits of R for any s € S?

(ii) Is it true that the ring R[[S,w]] is a left Archimedean domain if and
only if R is a left Archimedean domain, S is a left Archimedean monoid
and wg 18 injective for any s € S¢

Any submonoid of the additive monoid NU{0} is called a numerical monoid.
We have:

Corollary 4.3. Let S be a numerical monoid, < the usual natural order of
NU {0}, and R be a ring. Then R is a right (resp. left) Archimedean domain
if and only if the ring R[[S]] is a right (resp. left) Archimedean domain.

Corollary 4.4. ([20, Theorem 2.9]) Let R be a ring and o an endomorphism

of the ring R. Then:
(1) The ring R[[z;a]] is a right Archimedean domain if and only if R is a
right Archimedean domain, « is injective and preserves nonunits of R.
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(2) Rl[[z;a]] is a left Archimedean domain if and only if R is a left Archi-
medean domain and « is injective.

Let R be a ring, and consider the multiplicative monoid N2!, endowed with
the usual order <. Then A = R[[NZ!]] is the ring of arithmetical functions
with values in R, endowed with the Dirichlet convolution:

fg(n) = Zf(d)g(n/d) for each n > 1.
d|n

Corollary 4.5. Let R be a ring. Then R is a right (resp. left) Archimedean
domain if and only if the ring of arithmetical functions R[[NZ!]] is a right
(resp. left) Archimedean domain.

Let (S,<) be a strictly totally ordered monoid which is also artinian and
narrow. Then the set Xy = {(u,v) | wv = s,u,v € S} is finite for any s € S.
Let V be a free abelian additive group with the base consisting of elements
of S. It was noted in [10, Remark 1.2] that V is a coalgebra over Z with the
comultiplication map and the counit map as follows:

A(s) = Z u v, e(s){(l) z;i

and R[[S]] =2 Hom(V, R), the dual algebra with multiplication
fxg=(f®g) A foreach f,g € Hom(V,R).

Corollary 4.6. Let R be a ring, (S,<) be a strictly totally ordered monoid
which is also artinian and narrow. Let Hom(V, R) be the dual algebra defined
as above. Then Hom(V, R) is a right (resp. left) Archimedean domain if and
only if R is a right (resp. left) Archimedean domain.

Below we provide another characterization of Archimedean domains of skew
generalized power series R[[S,w]] in the case where (S, <) is a commutative
torsion-free cancellative artinian semisubtotally ordered monoid.

Theorem 4.7. Let R be a ring, (S,<) a commutative torsion-free cancella-
tive artinian semisubtotally ordered monoid and w : S — End(R) a monoid
homomorphism.
(i) The ring R[[S,w]] is a right Archimedean domain if and only if R is a
right Archimedean domain, ws is injective and preserves nonunits of R
for any s € S.
(ii) R[[S,w]] is a left Archimedean domain if and only if R is a left Archi-
medean domain and ws is injective for any s € S.

Proof. We adapt the proof of [18, Theorem 3.13]. Let < be the total order
associated with <, A = R[[S,w, <]] and B = R[[S,w, <]]. The “only if ” parts
of (i) and (ii) follow by analogous arguments as the “only if 7 parts of (i) and
(ii) in the proof of Theorem 4.1.
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To prove the “if” part of (i), assume that R is a right Archimedean domain,
ws is injective and preserves nonunits of R for any s € S. Then B is a right
Archimedean domain by Theorem 4.1(i). Now applying Proposition 2.2 and
Proposition 3.5 we deduce that A is a right Archimedean domain. Similar
arguments apply to the proof of the “if ” part of (ii), and therefore, the result
follows. O

From the preceding results, we can suggest the following question.

Question 4.8. Let R be a ring, (S,<) a commutative torsion-free semisubto-
tally ordered monoid and w : S — End(R) a monoid homomorphism.

(i) Is it true that the ring R[[S,w]] is a right Archimedean domain if and
only if R is a right Archimedean domain, S is a cancellative right
Archimedean monoid, ws is injective and preserves nonunits of R for
any s € S?

(ii) Is it true that the ring R[[S,w]] is a left Archimedean domain if and only
if R is a left Archimedean domain, S is a cancellative left Archimedean
monoid, and ws is injective for any s € S?

We will see in the following five corollaries that Theorem 4.7 provides a rich
source of examples of Archimedean domains.

Corollary 4.9. Let R be a ring and (S, <) be a commutative torsion-free can-
cellative artinian semisubtotally ordered monoid. Then the generalized power
series ring R[[S]] is a right (resp. left) Archimedean domain if and only if R is
a right (resp. left) Archimedean domain.

Corollary 4.10. Let R be a ring, (S, <) a commutative torsion-free cancella-
tive artinian positively ordered monoid and w : S — End(R) a monoid homo-
morphism.

(i) The ring R[[S,w]] is a right Archimedean domain if and only if R is a
right Archimedean domain, ws is injective and preserves nonunits of R
forany s e S.

(ii) R[[S,w]] is a left Archimedean domain if and only if R is a left Archi-
medean domain and ws is injective for any s € S.

Proof. Tt is clear that (S5,<) is a semisubtotally ordered monoid. Thus the
result follows from Theorem 4.7. (]

Corollary 4.11. Let (S1,<1),...,(Sn,<n) be commutative torsion-free can-
cellative artinian positively ordered monoids. Denote by (lex <) and (relex <)
the lexicographic order, the reverse lexicographic order, respectively, on the or-
dered monoid S; X -+- X Sp. If R is a ring and w : S1 X -+ x S, = Aut(R) is
a monoid homomorphism, then the following statements are equivalent:
(1) R[[S1 x -+ X Sp,w,lex <]] is a right (resp. left) Archimedean domain.
(2) R[[S1 X+ xSp,w,relex <]] is a right (resp. left) Archimedean domain.
(3) R is a right (resp. left) Archimedean domain.
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Proof. Tt is clear that (S1 X -+ X Sp,w,lex <) (resp. (S1 XX Sy, w,relex <))
is a commutative torsion-free cancellative artinian positively ordered monoid.
Thus the result follows from Corollary 4.10. O

Corollary 4.12. Let S be a submonoid of (NU{0})™ (n > 2), endowed with
the usual natural order < induced by the product order, or lexicographic order
or reverse lezicographic order. Let R be a ring and w : S — Aut(R) a monoid
homomorphism. Then R[[S,w]] is a right (resp. left) Archimedean domain if
and only if R is a right (resp. left) Archimedean domain.

Let a and 8 be endomorphisms of R such that o f = o «. Assume that
S = (NU{0}) x (NU{0}) is endowed with the lexicographic order, or the reverse
lexicographic order, or the product order of the usual order of N U {0}, and
define w : S — End(R) a monoid homomorphism via w(m,n) = o™ p" for any
m,n € NU{0}. Then R[[S,w]] = R[[z,y;«q, 5]], in which (az™y™)(bzPy?) =
aa™ 3" (b)x™ Pyt for any m,n,p,q € NU{0}.

Corollary 4.13. Let a and 8 be automorphisms of a ring R such that a0 =
Boa. Then R|[z,y;«, B]] is a right (resp. left) Archimedean domain if and only
if R is a right (resp. left) Archimedean domain.

We close this paper with the following example of an Archimeadean ACCP-
ring R with an endomorphism « for which the skew polynomial ring R[x; o] is
not an ACCPL-ring. Note that, an element r; = v;,v;, - - - v;, is considered as

a monomial of degree k. The degree of r = . 7 is the maximum of deg(r;).

Example 4.14. Suppose that K is a field and consider the ring R as fol-
lows: R = {K + K + 12K + -+ + v10eK + vjo3K + -+ [v? = 0, vjv; =

K[’Ul,’L)Q,...]

v;v; for every i,j}. In fact, R also can be defined as R := XM Define a
1V

on R as follows:

0, i is odd.

It is obvious that a(1) = 1. We claim that R satisfies ACCP. Suppose that R
does not satisfy ACCP. So there exists a non-stabilizing chaina; R C agR C - - -,
with a; € R. One can easily see that deg(a;) > deg(a;+1) and that deg(a;) =
00, which is a contradiction. Thus, R is an ACCP-ring. Now, we claim that R
is Archimedean. Let there exists a € R such that (1, .y Ra™ # 0. Then there
is t € Ra™ for each n which means that the degree of ¢t should be co and it is
also a contradiction. Hence R is Archimedean.

We claim that R[z;a] is not an ACCPL-ring. To do this, consider the
following sequence:

_Jwiy1, i is a positive even number,
a(v;) =

fo = apx + by, fn=anxr+b, forany n €N,
where ag = vy +v3+---,bop=1+vy+v4+--- and
Up = (pO)_l (anfl _pla((pO)_l)aa)nfl)) ) bn(pO)_1 = bnfl
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such that pgp = 1+ v, and p; = v;1 + vs + ---. One can see that f, 1 =
(p1x+po) frn- Sowe have Rfy C Rf; C ---. Note that p; is not nilpotent. Since
the degree of p¥ is k, so pyz +po is not a unit and we see that Rfy C Rf1 C ---,

=

which shows that the skew polynomial ring R[z;a] does not satisfy ACC on
principal left ideals.
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