DOI QR코드

DOI QR Code

ARCHIMEDEAN SKEW GENERALIZED POWER SERIES RINGS

  • Moussavi, Ahmad (Department of Pure Mathematics Faculty of Mathematical Sciences Tarbiat Modares University) ;
  • Padashnik, Farzad (Department of Pure Mathematics Faculty of Mathematical Sciences Tarbiat Modares University) ;
  • Paykan, Kamal (Department of Mathematics, Garmsar Branch Islamic Azad University)
  • Received : 2018.02.16
  • Accepted : 2019.02.20
  • Published : 2019.04.30

Abstract

Let R be a ring, ($S,{\leq}$) a strictly ordered monoid, and ${\omega}:S{\rightarrow}End(R)$ a monoid homomorphism. In [18], Mazurek, and Ziembowski investigated when the skew generalized power series ring $R[[S,{\omega}]]$ is a domain satisfying the ascending chain condition on principal left (resp. right) ideals. Following [18], we obtain necessary and sufficient conditions on R, S and ${\omega}$ such that the skew generalized power series ring $R[[S,{\omega}]]$ is a right or left Archimedean domain. As particular cases of our general results we obtain new theorems on the ring of arithmetical functions and the ring of generalized power series. Our results extend and unify many existing results.

Keywords

References

  1. D. D. Anderson, D. F. Anderson, and M. Zafrullah, Factorization in integral domains, J. Pure Appl. Algebra 69 (1990), no. 1, 1-19. https://doi.org/10.1016/0022-4049(90)90074-R
  2. H. Bass, Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95 (1960), 466-488. https://doi.org/10.1090/S0002-9947-1960-0157984-8
  3. P. M. Cohn, Free Rings and Their Relations, second edition, London Mathematical Society Monographs, 19, Academic Press, Inc., London, 1985.
  4. T. Dumitrescu, S. O. I. Al-Salihi, N. Radu, and T. Shah, Some factorization properties of composite domains A + XB[X] and A + XB[[X]], Comm. Algebra 28 (2000), no. 3, 1125-1139. https://doi.org/10.1080/00927870008826885
  5. G. A. Elliott and P. Ribenboim, Fields of generalized power series, Arch. Math. (Basel) 54 (1990), no. 4, 365-371. https://doi.org/10.1007/BF01189583
  6. D. Frohn, A counterexample concerning ACCP in power series rings, Comm. Algebra 30 (2002), no. 6, 2961-2966. https://doi.org/10.1081/AGB-120004001
  7. D. Frohn, Modules with n-acc and the acc on certain types of annihilators, J. Algebra 256 (2002), no. 2, 467-483. https://doi.org/10.1016/S0021-8693(02)00039-X
  8. D. Jonah, Rings with the minimum condition for principal right ideals have the maximum condition for principal left ideals, Math. Z. 113 (1970), 106-112. https://doi.org/10.1007/BF01141096
  9. T. Y. Lam, A First Course in Noncommutative Rings, Graduate Texts in Mathematics, 131, Springer-Verlag, New York, 1991.
  10. Z. Liu, Endomorphism rings of modules of generalized inverse polynomials, Comm. Algebra 28 (2000), no. 2, 803-814. https://doi.org/10.1080/00927870008826861
  11. Z. Liu, The ascending chain condition for principal ideals of rings of generalized power series, Comm. Algebra 32 (2004), no. 9, 3305-3314. https://doi.org/10.1081/AGB-120039398
  12. Z. Liu, Triangular matrix representations of rings of generalized power series, Acta Math. Sin. (Engl. Ser.) 22 (2006), no. 4, 989-998. https://doi.org/10.1007/s10114-005-0555-z
  13. G. Marks, R. Mazurek, and M. Ziembowski, A new class of unique product monoids with applications to ring theory, Semigroup Forum 78 (2009), no. 2, 210-225.
  14. G. Marks, R. Mazurek, and M. Ziembowski, A unified approach to various generalizations of Armendariz rings, Bull. Aust. Math. Soc. 81 (2010), no. 3, 361-397. https://doi.org/10.1017/S0004972709001178
  15. R. Mazurek, Left principally quasi-Baer and left APP-rings of skew generalized power series, J. Algebra Appl. 14 (2015), no. 3, 1550038, 36 pp. https://doi.org/10.1142/S0219498815500383
  16. R. Mazurek and K. Paykan, Simplicity of skew generalized power series rings, New York J. Math. 23 (2017), 1273-1293.
  17. R. Mazurek and M. Ziembowski, On von Neumann regular rings of skew generalized power series, Comm. Algebra 36 (2008), no. 5, 1855-1868. https://doi.org/10.1080/00927870801941150
  18. R. Mazurek and M. Ziembowski, The ascending chain condition for principal left or right ideals of skew generalized power series rings, J. Algebra 322 (2009), no. 4, 983-994. https://doi.org/10.1016/j.jalgebra.2009.03.040
  19. A. Moussavi and K. Paykan, Zero divisor graphs of skew generalized power series rings, Commun. Korean Math. Soc. 30 (2015), no. 4, 363-377. https://doi.org/10.4134/CKMS.2015.30.4.363
  20. A. R. Nasr-Isfahani, The ascending chain condition for principal left ideals of skew polynomial rings, Taiwanese J. Math. 18 (2014), no. 3, 931-941. https://doi.org/10.11650/tjm.18.2014.1663
  21. K. Paykan and A. Moussavi, Baer and quasi-Baer properties of skew generalized power series rings, Comm. Algebra 44 (2016), no. 4, 1615-1635. https://doi.org/10.1080/00927872.2015.1027370
  22. K. Paykan and A. Moussavi, Quasi-Armendariz generalized power series rings, J. Algebra Appl. 15 (2016), no. 5, 1650086, 38 pp. https://doi.org/10.1142/S0219498816500869
  23. K. Paykan and A. Moussavi, Semiprimeness, quasi-Baerness and prime radical of skew generalized power series rings, Comm. Algebra 45 (2017), no. 6, 2306-2324. https://doi.org/10.1080/00927872.2016.1233198
  24. K. Paykan and A. Moussav, Some results on skew generalized power series rings, Taiwanese J. Math. 21 (2017), no. 1, 11-26. https://doi.org/10.11650/tjm.21.2017.7327
  25. K. Paykan and A. Moussav, McCoy property and nilpotent elements of skew generalized power series rings, J. Algebra Appl. 16 (2017), no. 10, 1750183, 33 pp. https://doi.org/10.1142/S0219498817501833
  26. K. Paykan and A. Moussav, Nilpotent elements and nil-Armendariz property of skew generalized power series rings, Asian-Eur. J. Math. 10 (2017), no. 2, 1750034, 28 pp. https://doi.org/10.1142/S1793557117500346
  27. P. Ribenboim, Special properties of generalized power series, J. Algebra 173 (1995), no. 3, 566-586. https://doi.org/10.1006/jabr.1995.1103
  28. P. Ribenboim, Some examples of valued fields, J. Algebra 173 (1995), no. 3, 668-678. https://doi.org/10.1006/jabr.1995.1108
  29. P. Ribenboim, Semisimple rings and von Neumann regular rings of generalized power series, J. Algebra 198 (1997), no. 2, 327-338. https://doi.org/10.1006/jabr.1997.7063
  30. P. B. Sheldon, How changing D[[x]] changes its quotient field, Trans. Amer. Math. Soc. 159 (1971), 223-244. https://doi.org/10.1090/S0002-9947-1971-0279092-5