• Title/Summary/Keyword: artificial vision

Search Result 316, Processing Time 0.027 seconds

Image Processing Processor Design for Artificial Intelligence Based Service Robot (인공지능 기반 서비스 로봇을 위한 영상처리 프로세서 설계)

  • Moon, Ji-Youn;Kim, Soo-Min
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.4
    • /
    • pp.633-640
    • /
    • 2022
  • As service robots are applied to various fields, interest in an image processing processor that can perform an image processing algorithm quickly and accurately suitable for each task is increasing. This paper introduces an image processing processor design method applicable to robots. The proposed processor consists of an AGX board, FPGA board, LiDAR-Vision board, and Backplane board. It enables the operation of CPU, GPU, and FPGA. The proposed method is verified through simulation experiments.

Development of Image-Based Artificial Intelligence Model to Automate Material Management at Construction Site (공사현장 자재관리 자동화를 위한 영상기반 인공지능 모델개발)

  • Shin, Yoon-soo;Kim, Junhee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.221-222
    • /
    • 2021
  • Conventionally, in material management at a construction site, the type, size, and quantity of materials are identified by the eyes of the worker. Labor-intensive material management by manpower is slow, requires a lot of manpower, is prone to errors, and has limitations in that computerization of information on the identified types and quantities is additionally required. Therefore, a method that can quickly and accurately determine the type, size, and quantity of materials with a minimum number of workers is required to reduce labor costs at the construction site and improve work efficiency. In this study, we developed an automated convolution neural network(CNN) and computer vision technology-based rebar size and quantity estimation system that can quickly and accurately determine the type, size, and quantity of materials through images.

  • PDF

Feasibility in Grading the Burley Type Dried Tobacco Leaf Using Computer Vision (컴퓨터 시각을 이용한 버얼리종 건조 잎 담배의 등급판별 가능성)

  • 조한근;백국현
    • Journal of Biosystems Engineering
    • /
    • v.22 no.1
    • /
    • pp.30-40
    • /
    • 1997
  • A computer vision system was built to automatically grade the leaf tobacco. A color image processing algorithm was developed to extract shape, color and texture features. An improved back propagation algorithm in an artificial neural network was applied to grade the Burley type dried leaf tobacco. The success rate of grading in three-grade classification(1, 3, 5) was higher than the rate of grading in six-grade classification(1, 2, 3, 4, 5, off), on the average success rate of both the twenty-five local pixel-set and the sixteen local pixel-set. And, the average grading success rate using both shape and color features was higher than the rate using shape, color and texture features. Thus, the texture feature obtained by the spatial gray level dependence method was found not to be important in grading leaf tobacco. Grading according to the shape, color and texture features obtained by machine vision system seemed to be inadequate for replacing manual grading of Burely type dried leaf tobacco.

  • PDF

Intelligent Pattern Recognition Algorithms based on Dust, Vision and Activity Sensors for User Unusual Event Detection

  • Song, Jung-Eun;Jung, Ju-Ho;Ahn, Jun-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.8
    • /
    • pp.95-103
    • /
    • 2019
  • According to the Statistics Korea in 2017, the 10 leading causes of death contain a cardiac disorder disease, self-injury. In terms of these diseases, urgent assistance is highly required when people do not move for certain period of time. We propose an unusual event detection algorithm to identify abnormal user behaviors using dust, vision and activity sensors in their houses. Vision sensors can detect personalized activity behaviors within the CCTV range in the house in their lives. The pattern algorithm using the dust sensors classifies user movements or dust-generated daily behaviors in indoor areas. The accelerometer sensor in the smartphone is suitable to identify activity behaviors of the mobile users. We evaluated the proposed pattern algorithms and the fusion method in the scenarios.

Predicting Brain Tumor Using Transfer Learning

  • Mustafa Abdul Salam;Sanaa Taha;Sameh Alahmady;Alwan Mohamed
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.5
    • /
    • pp.73-88
    • /
    • 2023
  • Brain tumors can also be an abnormal collection or accumulation of cells in the brain that can be life-threatening due to their ability to invade and metastasize to nearby tissues. Accurate diagnosis is critical to the success of treatment planning, and resonant imaging is the primary diagnostic imaging method used to diagnose brain tumors and their extent. Deep learning methods for computer vision applications have shown significant improvements in recent years, primarily due to the undeniable fact that there is a large amount of data on the market to teach models. Therefore, improvements within the model architecture perform better approximations in the monitored configuration. Tumor classification using these deep learning techniques has made great strides by providing reliable, annotated open data sets. Reduce computational effort and learn specific spatial and temporal relationships. This white paper describes transfer models such as the MobileNet model, VGG19 model, InceptionResNetV2 model, Inception model, and DenseNet201 model. The model uses three different optimizers, Adam, SGD, and RMSprop. Finally, the pre-trained MobileNet with RMSprop optimizer is the best model in this paper, with 0.995 accuracies, 0.99 sensitivity, and 1.00 specificity, while at the same time having the lowest computational cost.

Performance Evaluation of Efficient Vision Transformers on Embedded Edge Platforms (임베디드 엣지 플랫폼에서의 경량 비전 트랜스포머 성능 평가)

  • Minha Lee;Seongjae Lee;Taehyoun Kim
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.3
    • /
    • pp.89-100
    • /
    • 2023
  • Recently, on-device artificial intelligence (AI) solutions using mobile devices and embedded edge devices have emerged in various fields, such as computer vision, to address network traffic burdens, low-energy operations, and security problems. Although vision transformer deep learning models have outperformed conventional convolutional neural network (CNN) models in computer vision, they require more computations and parameters than CNN models. Thus, they are not directly applicable to embedded edge devices with limited hardware resources. Many researchers have proposed various model compression methods or lightweight architectures for vision transformers; however, there are only a few studies evaluating the effects of model compression techniques of vision transformers on performance. Regarding this problem, this paper presents a performance evaluation of vision transformers on embedded platforms. We investigated the behaviors of three vision transformers: DeiT, LeViT, and MobileViT. Each model performance was evaluated by accuracy and inference time on edge devices using the ImageNet dataset. We assessed the effects of the quantization method applied to the models on latency enhancement and accuracy degradation by profiling the proportion of response time occupied by major operations. In addition, we evaluated the performance of each model on GPU and EdgeTPU-based edge devices. In our experimental results, LeViT showed the best performance in CPU-based edge devices, and DeiT-small showed the highest performance improvement in GPU-based edge devices. In addition, only MobileViT models showed performance improvement on EdgeTPU. Summarizing the analysis results through profiling, the degree of performance improvement of each vision transformer model was highly dependent on the proportion of parts that could be optimized in the target edge device. In summary, to apply vision transformers to on-device AI solutions, either proper operation composition and optimizations specific to target edge devices must be considered.

A Preliminary Study on the Construction of Clinical Data for Korean Herbal Prescription Recommendations for Anxiety, Depression, Anger, and Insomnia (불안, 우울, 분노 및 불면 증상에 대한 한의학파 처방 추천 임상 데이터 구축을 위한 기초 연구)

  • Dong-Hoon Kang;Ju-Yeon Kim;Ji-Yoon Lee;Je-Hyun Kim;Sangjun Yea;Ho Jang;Sanghun Lee;In Chul Jung
    • Journal of Oriental Neuropsychiatry
    • /
    • v.35 no.3
    • /
    • pp.231-246
    • /
    • 2024
  • Objectives: To build basic clinical data for developing an artificial intelligence algorithm for Korean herbal prescriptions for anxiety, depression, anger, and insomnia. Methods: Subjects were recruited among those who reported mild or more severe symptoms of anxiety, depression, anger, and insomnia (Anxiety: State-Trait Anxiety Inventory≥40, Depression: Beck Depression Inventory≥14, Anger: State-Trait Anxiety Inventory≥16, Insomnia: Insomnia Severity Index≥8). Clinical observation items including basic medical information and symptoms were collected from them. These data were then analyzed by experts in Hyungsang medicine, Sasang constitutional medicine, and Sanghan-Geumgwe medicine. Results and Conclusions: Experts of the three societies presented key clinical data and recommended prescriptions. Results of this study can be used as basic data for developing an artificial intelligence algorithm for Korean herbal prescriptions in the future.

Application of artificial intelligence-based technologies to the construction sites (이미지 기반 인공지능을 활용한 현장 적용성 연구)

  • Na, Seunguk;Heo, Seokjae;Roh, Youngsook
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.225-226
    • /
    • 2022
  • The construction industry, which has a labour-intensive and conservative nature, is exclusive to adopt new technologies. However, the construction industry is viably introducing the 4th Industrial Revolution technologies represented by artificial intelligence, Internet of Things, robotics and unmanned transportation to promote change into a smart industry. An image-based artificial intelligence technology is a field of computer vision technology that refers to machines mimicking human visual recognition of objects from pictures or videos. The purpose of this article is to explore image-based artificial intelligence technologies which would be able to apply to the construction sites. In this study, we show two examples which is one for a construction waste classification model and another for cast in-situ anchor bolts defection detection model. Image-based intelligence technologies would be used for various measurement, classification, and detection works that occur in the construction projects.

  • PDF

A Study on Teaching of Convolution in Engineering Mathematics and Artificial Intelligence (인공지능에 활용되는 공학수학 합성곱(convolution) 교수·학습자료 연구)

  • Lee, Sang-Gu;Nam, Yun;Lee, Jae Hwa;Kim, Eung-Ki
    • Communications of Mathematical Education
    • /
    • v.37 no.2
    • /
    • pp.277-297
    • /
    • 2023
  • In mathematics, the concept of convolution is widely used. The convolution operation is required for understanding computer vision and deep learning in artificial intelligence. Therefore, it is vital for this concept to be explained in college mathematics education. In this paper, we present our new teaching and learning materials on convolution available for engineering mathematics. We provide the knowledge and applications on convolution with Python-based code, and introduce Convolutional Neural Network (CNN) used for image classification as an example. These materials can be utilized in class for the teaching of convolution and help students have a good understanding of the related knowledge in artificial intelligence.

Computer Vision as a Platform in Metaverse

  • Iqbal Muhamad Ali;Ho-Young Kwak;Soo Kyun Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.9
    • /
    • pp.63-71
    • /
    • 2023
  • Metaverse is a modern new technology that is advancing quickly. The goal of this study is to investigate this technique from the perspective of computer vision as well as general perspective. A thorough analysis of computer vision related Metaverse topics has been done in this study. Its history, method, architecture, benefits, and drawbacks are all covered. The Metaverse's future and the steps that must be taken to adapt to this technology are described. The concepts of Mixed Reality (MR), Augmented Reality (AR), Extended Reality (XR) and Virtual Reality (VR) are briefly discussed. The role of computer vision and its application, advantages and disadvantages and the future research areas are discussed.