• Title/Summary/Keyword: artificial stream

Search Result 250, Processing Time 0.021 seconds

Reliability evaluations of time of concentration using artificial neural network model -focusing on Oncheoncheon basin- (인공신경망 모형을 이용한 도달시간의 신뢰성 평가 -온천천 유역을 대상으로-)

  • Yoon, Euihyeok;Park, Jongbin;Lee, Jaehyuk;Shin, Hyunsuk
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.1
    • /
    • pp.71-80
    • /
    • 2018
  • For the stream management, time of concentration is one of the important factors. In particular, as the requirement about various application of the stream increased, accuracy assessment of concentration time in the stream as waterfront area is extremely important for securing evacuation at the flood. the past studies for the assessment of concentration time, however, were only performed on the single hydrological event in the complex basin of natural streams. The development of a assessment methods for the concentration time on the complex hydrological event in a single watershed of urban streams is insufficient. Therefore, we estimated the concentration time using the rainfall- runoff data for the past 10 years (2006~2015) for the Oncheon stream, the representative stream of the Busan, where frequent flood were taken place by heavy rains, in addition, reviewed the reliability using artificial neural network method based on Matlab. We classified a total of 254 rainfalls events based on over unrained 12 hours. Based on the classification, we estimated 6 parameters (total precipitation, total runoff, peak precipitation/ total precipitation, lag time, time of concentration) to utilize for the training and validation of artificial neural network model. Consequently, correlation of the parameter, which was utilized for the training and the input parameter for the predict and verification were 0.807 and 0.728, respectively. Based on the results, we predict that it can be utilized to estimate concentration time and analyze reliability of urban stream.

Pattern Recognition of Long-term Ecological Data in Community Changes by Using Artificial Neural Networks: Benthic Macroinvertebrates and Chironomids in a Polluted Stream

  • Chon, Tae-Soo;Kwak, Inn-Sil;Park, Young-Seuk
    • The Korean Journal of Ecology
    • /
    • v.23 no.2
    • /
    • pp.89-100
    • /
    • 2000
  • On community data. sampled in regular intervals on a long-term basis. artificial neural networks were implemented to extract information on characterizing patterns of community changes. The Adaptive Resonance Theory and Kohonen Network were both utilized in learning benthic macroinvertebrate communities in the Soktae Stream of the Suyong River collected monthly for three years. Initially, by regarding each monthly collection as a separate sample unit, communities were grouped into similar patterns after training with the networks. Subsequently, changes in communities in a sequence of samplings (e.g., two-month, four-month, etc.) were given as input to the networks. After training, it was possible to recognize new data set in line with the sampling procedure. Through the comparative study on benthic macroinvertebrates with these learning processes, patterns of community changes in chironomids diverged while those of the total benthic macro-invertebrates tended to be more stable.

  • PDF

Recovery of Fish Community and Water Quality in Streams Where Fish Kills have Occurred (어류폐사의 발생 이후 하천에서 수질의 변화 및 어류상 회복)

  • Lee, Jae-Yong;Lee, Kwang-Yeol;Lee, Saeromi;Choi, Jaeseok;Lee, Seok-Jong;Jung, Sungmin;Jung, Myoung-Sook;Kim, Bomchul
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.2
    • /
    • pp.154-165
    • /
    • 2013
  • The species composition of the fish community was studied in four streams where fish kills have previously occurred in recent years; Worun Stream, Seo Stream, Jangnam Stream, and the Anyang Stream. The number of fish species varied from 22 to 86% compared to the number of fish species pre-fish kill. The recovery of fish populations in the streams seems to be determined by water quality and the presence of artificial structures in the streams. The Jangnam Stream, where alkaline pH caused a fish kill, showed a high recovery of fish species due to improvements in water quality. Anyang Stream had a low number of species, possibly because dissolved oxygen concentrations were intermittently low. Artificial structures in streams had a negative impact the recovery of fish species, particularly for benthic fish species. It appears that fish populations can recover rapidly when water quality improves or the movement of fish community is unimpeded. However, water quality and artificial structures in many streams in Korea still present adverse conditions for fish survival, deterring the recovery of fish populations. To conserve fish populations in streams, habitat all owing unimpeded movement for fish and controls on pollutant inputs are needed.

Influence of the Eco-park Development on Bird Community in Urban Stream (도시하천의 생태공원화가 조류군집에 미치는 영향)

  • 김정수;구태회
    • The Korean Journal of Ecology
    • /
    • v.26 no.3
    • /
    • pp.97-102
    • /
    • 2003
  • This study was carried out to understand the variation of bird community by eco-park development of urban stream, Yangjae stream, Seoul, from Jan. 1996 to Dec. 2001. After the development, slight change in the bird community happened; for example, the number of species increased(r²=0.729, p<0.05), but there was not any variation in the total number of birds(r²=0.050, p>0.05). Especially, the number of individuals in herons and ducks rose. We suggest that the change as caused by restoration of low revetment vegetation and artificial pond vegetation in flood plain. However, the number of sandpipers, plovers and wagtails inhabiting on the sands and gravels in stream fell down. It seems that it would be caused by construction of bicycle path on the flood plain. The number of songbirds was tended to go down to 2000, but increased in 2001. The decrease of songbirds might be attributed to irregular removals of bush. We suggested that riparian vegetation restoration and artificial ponds positively affected birds inhabitation, but bicycle path and irregular elimination of a bush negatively affected.

A Comparative Study on the Preference and Visual Characteristics of Stream Landscape According to Hydromorpological Structures (하천의 물리적 구조에 따른 하천경관의 선호도 및 시각적 이미지 비교 연구)

  • Choi, Yun Eui;Lee, Jung A;Chon, Jinhyung
    • Journal of Wetlands Research
    • /
    • v.15 no.3
    • /
    • pp.301-315
    • /
    • 2013
  • The purpose of this study is to investigate characteristics of hydromorpological structures that affect landscape preference and visual characteristics on the sections of the designated streams where have dynamic ecological characteristics. We evaluated the ecological status of the streams utilizing LAWA to assess hydromorpological structures of streams. We also investigated preference and visual characteristics of stream landscapes through Semantic Differential Scale(SD scale). The differences of visual images according to the characteristics of hydromorpological structures in the sites were analyzed by descriptive statistics, One-way ANOVA, and t-test. As a result, this study showed that sections represented as "good" ecological status are shown to be harmonious, beautiful, natural, and clean comparing to sections represented as "poor" ecological status. The hydromorpological structures that have significant impacts on the visual characteristics are considered as riparian vegetation, cross-sectional shape, and the artificial structures. Results of this study can help guide the stream restoration of the damaged stream to improving ecological function and positive landscape.

ECOLOGICAL RESPONSE OF STREAMS IN KOREA UNDER DIFFERENT MANAGEMENT REGIMES

  • Lee Chang-Seok;Cho Yong-Chan;Shin Hyun-Cheol;Moon Jeong-Suk;Lee Byung-Cheon;Bae Yang-Seop;Byun Hwa-Geun;Yi Hoon-Bok
    • Water Engineering Research
    • /
    • v.6 no.3
    • /
    • pp.131-147
    • /
    • 2005
  • Today, a trend that tries to return the artificial space of a river to a natural one is expanding. But in Korea, which lies in the monsoon climate zone, rivers endure flood damage every year. Moreover, climatic change from global warming causes severe variations in precipitation patterns. Until recently, river restoration practices in Korea have followed partial restoration. These restorative treatments transformed artificial structures of the stream to natural ones and introduced natural vegetation by imitating natural or semi-natural streams. Treatment transformed the riparian structure and increased the diversity of micro-topography and vegetation. Furthermore, restoration recovered species composition, increased species diversity, and inhibited the establishment of exotic species. In particular, the Suip stream, which was left to its natural process for approximately 50 years, recovered its natural features almost completely through passive restoration. An urban stream, the Yangjae, and a rural stream, the Dongmoon, were restored partially by applying ecological principles. On the contrary, technological treatment applied to recover flood damage induced species composition far from the natural vegetation and decreased species diversity. Additionally, this treatment increased exotic species. The same results were found also in benthic invertebrate and fish fauna. The above-mentioned results reflect the importance of ecological considerations in river management.

  • PDF

Studies on the Integrated Stream Naturalness Assessment Based on Abiotic and Biotic Factors (비생물 및 생물 요인에 기초한 통합적 하천자연도 평가기법에 관한 연구)

  • Pyo, Jae-Hun;Mun, Hyeong-Tae
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.1
    • /
    • pp.61-69
    • /
    • 2011
  • Integrated stream naturalness based on abiotic and biotic factors were developed. Abiotic factors considered in this study were types of land use in the riparian area, river bank and high water bed streamside, revetment, bed substrate and artificial construction of streamside. Biotic factors included types of vegetation, assemblages of fish, macroinvertebrate, bird and mammal(Otter) in streams. The presence/absence of legal species and biological assessment index were also weighted as important parameters in this study. Scoring criteria selected for each matrix was five rating system; 1=poor, 2=moderate, 3=fair, 4=good, 5=excellent. Numerical ratings for the matrix were then summed. This resulted in a minimum score of 13 if all matrix at a site were poor, and a maximum score of 65 if all matrix were excellent. Five grade system from poor(I) to excellent condition(V) was employed. To verify its validity in natural environment, the evaluation system was applied to the Gapchun stream which is a test bed selected. Our result showed that stream naturalness of each reach was clearly distinguished by biotic and abiotic characteristics. Determination of correlation coefficient between abiotic and biotic factors was also high ($R^2=0.96$, p<0.05). In conclusion, assessment for stream naturalness reflecting abiotic and biotic factors was useful method representing stream integrated.

Characterizing Ecological Exergy as an Ecosystem Indicator in Streams Using a Self-Organizing Map

  • Bae, Mi-Jung;Park, Young-Seuk
    • Korean Journal of Environmental Biology
    • /
    • v.26 no.3
    • /
    • pp.203-213
    • /
    • 2008
  • Benthic macro invertebrate communities were collected at six different sampling sites in the Musucheon stream in Korea from July 2006 to July 2007, and ecological exergy values were calculated based on five different functional feeding groups (collector-gatherer, collector-filterer, predator, scrapper, and shredder) of benthic macro invertebrates. Each sampling site was categorized to three stream types (perennial, intermittent and drought) based on the water flow condition. Exergy values were low at all study sites right after a heavy rain and relatively higher in the perennial stream type than in the intermittent or the drought stream type. Self-Organizing Map (SOM), unsupervised artificial neural network, was implemented to pattern spatial and temporal dynamics of ecological exergy of the study sites. SOM classified samples into four clusters. The classification reflected the effects of floods and droughts on benthic macroinvertebrate communities, and was mainly related with the stream types of the sampling sites. Exergy values of each functional feeding group also responded differently according to the different stream types. Finally, the results showed that exergy is an effective ecological indicator, and patterning changes of exergy using SOM is an effective way to evaluate target ecosystems.

Effect of Algal Bloom Control Using the Mesocosms Installed with Zooplankton, Fishes, Aquatic Macrophytes and Artificial Marshy Land in Kyungan Stream (경기도 경안천에 설치한 메소코즘 내에서의 동물플랑크톤, 어류, 수생식물, 인공식물섬에 의한 조류저감효과 연구)

  • Song, Mi-Ae;Kong, Dong-Soo;Lee, Ok-Min
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.5
    • /
    • pp.641-647
    • /
    • 2013
  • We installed mesocosms including zooplankton, fishs, artificial marshy land and aquatic macrophytes in Kyoungan stream to study the reduction effects of algae from Sep. 16 to Oct. 28, 2011. The control tendency of phytoplankton taxa was compared by analyzing community structure and dominant species in each mesocosm. Under the condition where Bluegill was absent, Daphnia similoides showed good effect of algal control since it has large food area and has high grazing pressure. Bluegill selectively preys upon large zooplankton, Daphnia similoides, as it also preys on small zooplanktons that flow in. In condition that Bluegill was absent, Daphnia similoides preyed selectively large phytoplankton (Cryptomonas ovata). Due to the shading of light, removal of nutrients and providing refuge for small zooplanktons, aquatic macrophytes and artificial marshy land showed high level of algal control. In corrals with aquatic macrophytes and artificial marshy land, the dominancy of genus Coelastrum and Pediastrum, which are difficult for small zooplanktons to feed on, relatively increased. In conclusion, under conditions of small number of predators such as Bluegill, Daphnia similoides is thought to be useful in algal bloom; however, when lots of predators are present, using small sized zooplanktons along with artificial marshy land and aquatic macrophytes is thought to be more useful than using large zooplanktons.

A Numerical Study on Chemical Effects of Co2 Addition to Oxidizer and Fuel Streams in H2-O2 Counterflow Diffusion Flames (수소-산소 대향류 확산 화염에서 산화제와 연료측에 첨가된 Co2의 화학적 효과에 관한 수치해석 연구)

  • Lee, Kee-Man;Park, Jeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.4
    • /
    • pp.371-381
    • /
    • 2004
  • Numerical simulation of $CO_2$ addition effects to fuel and oxidizer streams on flame structure has been conducted with detailed chemistry in H$_2$-O$_2$ diffusion flames of a counterflow configuration. An artificial species, which displaces added $CO_2$ in the fuel- and oxidizer-sides and has the same thermochemical, transport, and radiation properties to that of added $CO_2$, is introduced to extract pure chemical effects in flame structure. Chemical effects due to thermal dissociation of added $CO_2$ causes the reduction flame temperature in addition to some thermal effects. The reason why flame temperature due to chemical effects is larger in cases of $CO_2$ addition to oxidizer stream is well explained though a defined characteristic strain rate. The produced CO is responsible for the reaction, $CO_2$+H=CO+OH and takes its origin from chemical effects due to thermal dissociation. It is also found that the behavior of produced CO mole fraction is closely related to added $CO_2$ mole fraction, maximum H mole fraction and its position, and maximum flame temperature and its position.