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Abstract — Benthic macroinvertebrate communities were collected at six different sampling sites
in the Musucheon stream in Korea from July 2006 to July 2007, and ecological exergy values were
calculated based on five different functional feeding groups (collector-gatherer, coliector-filterer,
predator, serapper, and shredder) of benthic macroinvertebrates. Each sampling site was catego-
rized to three stream types (perennial, intermittent and drought) based on the water flow condi-
tion. Exergy values were low at all study sites right after a heavy rain and relatively higher in the
perennial stream type than in the intermittent or the drought stream type. Self-Organizing Map
(SOM), unsupervised artificial neural network, was implemented to pattern spatial and temporal
dynamics of ecological exergy of the study sites. SOM classified samples into four clusters. The
classification reflected the effects of floods and droughts on benthic macroinvertebrate communi-
ties, and was mainly related with the stream types of the sampling sites. Exergy values of each
functional feeding group also responded differently according to the different stream types. Final-
ly, the results showed that exergy is an effective ecological indicator, and patterning changes of
exergy using SOM is an effective way to evaluate target ecosystems.
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INTRODUCTION

Disturbance has been regarded to be changes in ecosys-
tem, community or population structure in response to rela-
tively discrete events altering resources or physical envi-
ronments (Sousa 1984: White and Pickett 1985), and has
been also considered by many stream ecologists because of
playing a central role in determining the structure of stream
communities (e.g., Resh er af. 1988; lake 1990; Fisher and
Grimm 19915 Poff 1992: Giller 1996). Especially, floods,
low flows and droughts are the major events which influ-
ence to lotic ecosystems as environmental conditions are
changed.
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Floods are usually pulse disturbances which are short-
term and sharply delineated disturbances. They alter the
abiotic environment of the floodplain and the channel and it
subsequently leads to changes in the composition of the
biota. During floods, benthic macroinvertebrates are influ-
enced by water velocity (Hart et al. 1996; Holomuzki and
Biggs 1999, 2000) and by physical scouring once bed move-
ment is initiated (Newbury 1984; Cobb er af. 1992; Biggs er
al. 2001). Generally, benthic macroinvertebrate communi-
ties respond to floods with reduction of the density and
taxonomic richness (Gjerlov er al. 2003). However, floods
should be considered through their magnitude, duration,
frequency, predictability, the rate of change of their hydro-
graph, and the shear forces that they exert on sections of the
streambed {Pott er al. 1997).

Meanwhile. the impacts of low flows on benthic macro-
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invertebrate communities were not studied as much as the
impacts of floods (Boulton 2003; Wood and Armitage 2004).
As flows decrease, there is generally a reduction in habitat
space (Stanley et al. 1997; Brasher 2003) and often a reduc-
tion in invertebrate density (Cowx et al. 1984). Droughts
are ramp disturbances where the strength of the disturbance
steadily increases over time (Lake 2000). Thus, droughts
cause the direct effects such as loss of water and indirect
effects, generated by the loss of water volume, that affect
water quality and resource availability that in turn affect the
biota (Matthews 1998; Gasith and Resh 1999; Lake 2000;
Boulton 2003; Matthews and Marsh-Matthews 2003).

Stable environment contains more species and more niches
because a more stable environment involves a higher degree
of organization and complexity of the food web (Margalef
1958). Consequently, according to environmental conditions,
energy (quantity and quality) transfer processes will be af-
fected, in addition to interactive changes among internal
populations (e.g. trophic relations) (Sgndergaard et al. 1990;
Zhou et al. 1996; Marques et al. 1997, Jgrgensen and Niel-
sen 1998). Several goal functions such as maximum power
(Odum 1960), biomass (Straskraba 1980), exergy (Jgrgen-
sen 1982), ascendency (Ulanowicz 1986), and entropy (Sch-
neider 1988; Aoki 1989) have been proposed to describe
the direction of the ecosystem development. Among them,
Jgrgensen (1994) showed that exergy has a good theoretical
basis in thermodynamics, a close relation to information
theory and good correlation to other goal functions. Exergy
is defined as the amount of work a system can perform when
it is brought to thermodynamic equilibrium with its environ-
ment. The environment or reference state could be repre-
sented as the inorganic soup of the system without life (Jgr-
gensen 1997). With this reference state the exergy measures
directly the distance between the present state of the consi-
dered ecosystem and the thermodynamic equilibrium (Jgr-
gensen 1992, 1997; Jgrgensen et al. 1995). Therefore, exer-
gy may be an effective measurement to represent the chang-
es of accumulated energy through the effects of disturbances
such as flooding, low water levels and drought of target
ecosystems.

Exergy was used in many studies in order to evaluate
ecological health: Alessandro and Antonio (2003) used
exergy and specific exergy indices to show the develop-
ment state of lake ecosystems, Oh and Silow (2003) showed

that the structural exergy decreases in the polluted area

comparing with the clean area on lake Baikal, Salas ez al.
(2006) compared exergy with other ecological indicators to
assess ecological status, and Libralato et al. (2006) applied
exergy as an ecosystem indicator to evaluate the recovery
process of marine benthic communities. In Korea, exergy
was used for ecological health assessment in Nakdong River
(Kim and Jgrgensen 1999; Kim 2000) and for evaluating
temporal dynamics of benthic macroinvertebrate communi-
ties in Suyong River (Park ef al. 2001).

The functional feeding groups (FFGs) of benthic macro-
invertebrates which are guilds of the macroinvertebrate taxa
and represent getting food using similar ways, regardless of
taxonomic affinities, represent not only a variety of distur-
bances of their habitats but also a taxonomically hetero-
geneous assemblage of benthic fauna. In addition, their dis-
tributions respond mostly to disturbances changing the food
base of the system because they reflect the food resources
available in a given area (e.g., Hart and Robinson 1990).
Therefore, FFGs have offered a means of assessing the
disruption of ecosystem function (Resh and Jackson 1993;
Barbour et al. 1999).

In recent years, artificial neural networks (ANNs) have
been implemented in diverse aspects (Lek and Guegan
1999: Lek et al. 2005). Since Chon et al. (1996) applied the
Self-Organizing Map (SOM) to ecological data in order to
pattern benthic communities, the SOM has been widely
used for extracting the complexity of ecological datasets
(Park and Chon 2007). In addition, the SOM was used for
patterning the changes of exergy of benthic macroinver-
tebrate communities in streams in time (Park er al. 2001)
and in space (Park et al. 2006).

Through the adaptive learning property of the SOM, in
this study, we characterized the changes of exergy as an
ecological indicator based on functional feeding groups of
benthic macroinvertebrates as responses of environmental

changes in streams according to space and time.

MATERIALS AND METHODS

1. Ecological data

Benthic macroinvertebrates were monthly collected with
the Surber sampler (30 cm X 30 cm, 300 (im mesh; APHA et
al. 1985) at six different sampling sites of the Musucheon

stream, in Mt. Dobong in Seoul, Korea (Fig. 1) from July
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Fig. 1. Study sites in Musucheon stream, Seoul, Korea.

2006 to July 2007. On each sampling occasion, physical
and chemical variables were measured at each sampling
site. Water temperature (°C), dissolved oxygen (mg L"),
conductivity (Um), pH were measured in situ with a multi-
function meter (CX401¥, Elemetron). Turbidity was mea-
sured with 2100P turbidimeter (StablCal®, Hach Company).
Discharge was calculated by integrating medium depth (m),
total width {m) and current velocity (m s ). Precipitation
data in Seoul were obtained from the Korea Meteorological
Administration.

Because the sampling sites located in the Bukhansan
National Park, the sampling sites were relatively clean and
not heavily disturbed by the chemical or domestic wastes,
Therefore, the main disturbance factors in this area were
natural disturbance events such as floods. There was a hea-
vy rain at sampling area before the first sampling in July
2006, and it atfected severely on the stream habitat. Water
flow and discharge at the sampling sites were strongly in-
fluenced by precipitation. Based on the stream flow condi-
tion, therefore. the sampling sites were classified into three
stream types: perennial stream type (water flowed consis-
tently at sampling sites during study period. Sites 2 and 3),
intermittent stream type (stream was not completely dried
out, but partially dried out with pools. Sites 1 and 3), and
drought stream type (sampling sites were in the downstre-
am and completely dried out during the dry season. Sites 4
and 6).

Each species of benthic macroinvertebrates was catego-
rized into one of five functional feeding groups (collector-

gatherer (CG). collector-filterer (CF). predator (P), scraper

(8), and shredder (SH)) according to its feeding type. At
each sampling sites, additionally, community indices such
as Shannon diversity index and species richness were cal-
culated to evaluate the target community structures and

ecosystems.

2. Exergy

Exergy for benthic macroinvertebrate communities can
be estimated by means of the following equation:
"
Ex=Y(wc)
e
where ¢; is the concentration (in this case we used abun-
dance data) of the ith state variable (i.e., species), w; is the
information stored in the ith state variable, and » is the
number of variables. The weighting factors express the
information that each species in benthic macroinvertebrates
carries by the genes. For example, w; for inorganic compo-
nents is ‘0’ due to no information, while w; for organic mat-

‘

ter {e.g. detritus) is ‘1’. The weighting factors are unfortu-
nately only known roughly because our knowledge to the
genes of species is very limited. Furthermore, it is not pos-
sible to calculate the exergy of an ecosystem due to its very
high complexity. It should, therefore, be stressed that the
calculations only give an exergy index for a model of an
ecosystem. The use of the weighting factors is, however,
robust, as it has been possible to apply this approach succe-
ssfully in structurally dynamic modelings (see Jorgensen et
al. 2000, 2002). In this study, data for benthic macroinver-
tebrate communities were used for calculating exergy. Based
on Fonseca et al. (2000), we assigned 230 for Crustacean,
450 for Gastropoda, 50 for Annelida, and 70 for Insecta.
Each exergy of five FFGs was transformed by natural
logarithm in order to reduce their variation range. To avoid
a problem of logarithm zeros, the number one was added to
the density of each species. Subsequently, the transformed
data were proportionally scaled between 0 and 1 in the ran-
ge of the minimum and maximum for each species. Throu-
gh these procedures, each FFG gets the same weight (i.e.,

importance) in the data matrix.

3. Modeling process

Self-Organizing Map (SOM} was used to characterize

spatial and temporal dynamics of ecological exergy at the
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study sites. SOM is an unsupervised learning algorithm of
artificial neural networks and approximates the probability
density function of the input data (Kohonen 2001). SOM
consists of input and output layers connected with compu-
tational weights (connection intensities). The array of input
neurons (computational units) operates as a flow-through
layer for the input vectors, whereas the output layer con-
sists of a two-dimensional network of neurons arranged in a
hexagonal lattice.

In the learning process of SOM, initially the input data
(exergy of five FFGs in this study) were subjected to the
network. In this study, the number of output neurons was
set to 28 (=4 x 7) in 2D hexagonal lattice. A hexagonal lat-
tice is preferred because it does not favor horizontal or ver-

tical directions (Kohonen 2001). The number of nodes was

determined as 5 X Jnumber of samples (Vesanto 2000).
Subsequently, the map size was determined. Basically. the
two largest eigen values of the training data were calculated
and the ratio between side lengths of the map grid was set
to the ratio between the two maximum eigen values. The
actual side lengths were then set so that their product was
close to the determined number of map units. Subsequently,
the weights of the network were trained for a given dataset.
Each node of the output layer computes the summed dis-
tance between weight vector and input vector. The output
nodes are considered as virtual units to represent typical
patterns of the input dataset assigned to their units after the
learning process. Among all virtual units, the best matching
unit (BMU), which has the minimum distance between wei-
ght and input vectors, becomes the winner. For the BMU
and its neighborhood units, the new weight vectors are up-
dated by the SOM learning rule. This results in training the
network to classify the input vectors by the weight vectors
they are closest to.

After training, the Ward’s linkage method based on the
Euclidean distance (Ward 1963) was applied to the weights
of the nodes in SOM for further clustering (Jain and Dubes
1988; Park et al. 2003). For training the SOM, we used the
functions provided in the SOM toolbox (Alhoniemi ef al.
2000) in Matlab (The Mathworks 2001). Kruskall Wallis
test, non-paramnetric analysis of variance, was carried out
to evaluate the differences of variables among clusters de-
fined in the SOM, and then Dunn’s multiple comparison
test was conducted for variables in order to show the signi-

ficant differences among clusters. The analyses were carri-
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Fig. 2. Monthly precipitation in Seoul during study period. Arrow
indicates the first sampling time.

ed out by statistical software STATISTICA (StatSoft 2004).

Results

1. Exergy of benthic macroinvertebrate

communities

There was a heavy rain at study area before the first
sampling in July 2006. Fig. 2 shows the monthly changes
of precipitation during the study period. A heavy rain was
recorded with 745.1 mm for one month before the first sam-
pling in July 2006. This heavy rain effect was reflected in
the exergy values of the sampling sites. Fig. 3 shows the
variations of exergy, species richness and Shannon diver-
sity index at six different sampling sites. Right after a hea-
vy rain, exergy value was relatively low in all study sites in
the range of 3.4~19.4 kJ L™', and then gradually increased
until winter showing the highest values with 578.9 kJ L!
(Fig. 3a). However, different sites showed different exergy
values at different months. Exergy values were relatively
higher at study sites 2 (average 170.3 kJ L' per sample)
and 5 (198 kJ L1 per sample) which were the perennial stre-
am type, representing also seasonal changes with high val-
ues in winter and low values in summer. Exergy was low at
sites 1 (77.2 kJ L-! per sample) and 3 (64.3 kJ L~ per sam-
ple) which were the intermittent stream type as well as sites
4(123.3 kJ L7! per sample) and 6 (87.5 kJ L1 which were
the drought stream type. Sites 1 and 3 were not completely
dried, but partially dried, while sites 4 and 6 were comple-
tely dried during the dry season. Although there was enough
water discharge after the dried period, exergy was very low.

Species richness had also similar patterns with exergy (Fig.
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Fig. 3. Monthly changes of (a) exergy, (b) specics richness and (¢)
Shannon diversity index at six different sites during the sur-
vey period.
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3b). In addition, species richness was relatively low in the
intermittent stream type and the drought stream type com-
paring with the perennial stream type. Shannon diversity
index showed different values at different study sites, show-
ing low values at drought stream type. However, the differ-
ences were not clear among perennial and intermittent stream

type (Fig. 3c).

2. Patterning communities with SOM

Samples were classified through the learning process of
the SOM based on the similarities of their exergy values of
FFGs, displaying the differences of the sampling time and
the sampling sites (Fig. 4). For example, samples from sites
4 and 6 were mostly in the upper right area of the SOM
map, samples from sites 2 and 5 were in the lower area of
the map and samples from sites | and 3 were in the upper
left area in the ordination map. In addition, samples from
July 2006 were in the upper area, whereas samples from
winter were in the lower area of the SOM map. The units of
the SOM map were classified into four (I-1V) clusters based
on a cluster analysis with the Ward linkage method show-

ing the spatial characteristics of the exergy value. Cluster
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Fig. 4. (a) Classification of samples at six different sites at different months on the SOM map trained with exergy of five functional feeding
groups. (b) U-matrix and (¢) Dendrogram for clustering the SOM units with Ward linkage algorithm with Euclidean distance mea-
sure. Acronyms in the SOM units stand for the samples: the first number means site name. 06 and 07 indicate respectively 2006 and

2007 years. and the following letters represent sampling months.
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Fig. 5. Visualization of the estimated exergy of functional feeding groups through the learning process of the SOM. Dark scale represents

high value of each variable, while light one is low value.

1V represented samples from sites 4 and 6, where the drou-
ght stream type, during the survey period, whereas cluster
II represented samples from sites 2 and 5 where the peren-
nial stream type. In addition, cluster I mainly included sam-
ples from sites 1 and 3 where the intermittent stream type.

Fig. 5 displays the distribution of estimated exergy of
each FFG on the SOM map. The values were calculated as
weights of the SOM through the learning process of the
network. Dark represents high values of exergy, whereas
light is low values. Overall, five FFGs showed different
distribution patterns on the SOM map. Cluster II including
the data from the perennial stream type had the relatively
higher ratio of FFGs, whereas cluster I including the data
from the intermittent stream type had the relatively lower
ratio of FFGs, especially collector-filterer. In addition, clus-
ter IV including the data from the drought stream type had
the relatively lower ratio of SC, SH and P.

Exergy and community indices such as Shannon diver-
sity index, evenness and species richness varied with differ-
ent clusters (Fig. 6). Exergy was significantly higher in clus-
ter II comparing with other clusters (Kruskall Wallis test, p
<0.05). Shannon diversity index was significantly low in
cluster 1V (Kruskall Wallis test, p<0.05), while the index
was not significantly different in other clusters. Species

richness was also low in cluster IV, while it was high in

cluster I and intermediate range in clusters I and III (Kru-
skall Wallis test, p<0.05). However, evenness was the high-
est in cluster I, whereas the lowest in cluster IV and inter-
mediate in clusters 1T and III (Kruskall Wallis test, p<<0.05).
Temperature and conductivity were significantly differ-
ent among clusters showing lower temperature in cluster II
and lower conductivity in cluster III (Kruskall Wallis test, p
<0.05) (Fig. 7). Although other environmental variables
such as velocity, water depth, width, and DO were not sig-
nificantly different among clusters, velocity and width were
relatively low in cluster I and high in cluster IV, water dep-
th was relatively low in cluster IV and high in clusters III,

and DO was relatively higher in cluster IL.

DISCUSSION AND CONCLUSION

In this study, exergy of FFGs was calculated with benthic
macroinvertebrate communities based on taxa, and the stu-
dy sites were patterned through an adaptive learning algori-
thm, SOM. In Korea, the precipitation usually concentrates
on the summer periods. In this result, the monthly precipi-
tation was very high in July and August (Fig. 2). It caused
discharge, water depth and width to increase in the Musu-

cheon stream in the summer periods so exergy value was
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Fig. 6. Differences of biological variables at different clusters. (a) exergy. (b) species richness, (¢) Shannon diversity index and (d) evenness.
Error bars indicate mean and standard error of each variable. Different alphabets indicate significant differences among the clusters

based on Dunn’s multiple comparison test (p=0.05).

the lowest in all study sites at the first sampling time. The
heavy rain disturbed strongly stream habitats for benthic
macroinvertebrates as well as swept downstream benthic
macroinvertebrates, resulting in the decrease of ecological
exergy (Fig. 3). Additionally, in the autumn as the autumn
shed leaves were degraded and much food was provided to
benthic macroinvertebrates, the exergy value increased.
Changes of exergy also reflected the different stream ha-
bitat types. Exergy was higher in study sites 2 and 5 where
perennial stream type (water flowed consistently at sampl-
ing sites during the study period), while exergy was lower
at other sites where intermittent stream type (stream was
not completely dried out, but partially dried out with pools.
Site 1 and 3) or drought stream type (sampling area was
completely dried out during the dry season. Sites 4 and 6)
(Fig. 3). This might be caused as the intermittent streams
have the frequent absence of flow, and insufficient water
levels when it flows (Kinzie er al. 2006) resulting in the
decrease of wetted width, resulting in decrease of available
habitat (Cowx ef al. 1984; Stanley er al. 1997; Brasher
2003), reduction of habitat diversity (Cazaubon and Giudi-

celli 1999), and alteration of habitat suitability (Cowx ef al.
1984).

Sites 4 and 6, the drought stream type, flowed only after
rainfall or melting of the frozen water at upstream. So the
exergy values were highly various because of unstable en-
vironmental conditions. It is interesting to see the differ-
ences of exergy at site 4. showing high exergy in April and
July 2007. This was caused by the increase of the Collem-
bola sp. in April, and Baetis fuscatus and Tanytarsus heus-
densis in July. After these periods, the study sites were
completely dried out.

Species richness as an ecological indicator for ecosystem
assessments and an integrative descriptor of the community
reflects the changes of the natural environmental variables
as well as anthropogenic disturbances (Rosenberg and Resh
1993). In this study, species richness was also lower in the
intermittent stream type and the drought stream type com-
paring with the perennial stream type, however, it was dif-
ficult to show the community change pattern only using
species richness. In addition, Shannon diversity index did

not show clearly the differences of community structures
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among the study sites. And the effects of the disturbance on
community were not reflected in the index, although exergy
showed spatial and temporal variations among samples.
This represented exergy can differentiate more effectively
the differences of communities of target ecosystems, al-
though the biodiversity index can not distinguish the diffe-
rences of communities (Park et al. 2006). Even though ex-
ergy can be used as great ecological indicators representing
the community dynamics, it is not possible to calculate cle-

arly the exergy of an ecosystem due to its very high com-

plexity. Therefore, it should be stressed that the calcula-
tions only give an exergy index for a model of an ecosys-
tem (Park et al. 2006).

SOM was used to extract ecological information from ex-
ergy of five FFGs at six different study sites in the Musu-
cheon streams. SOM results showed the spatial and tem-
poral dynamics of samples based on the similarities of their
exergy values. Based on five input variables (CF, CG, P, S,
and SH), the clusters were defined in a hierarchical manner

depending on the exergy. SOM patterned the study sites
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based on the exergy of FFGs. Four clusters defined in the
SOM clearly showed the differences of exergy at the differ-
ent stream types (intermittent, perennial and drought). In
addition, the different distribution patterns of five FFGs
were shown in the SOM map. In cluster 1 including the
samples from sites | and 3 characterizing with the inter-
mittent stream type, exergy and species richness were sig-
nificantly low. In cluster Il including the samples from sites
2 and 5, the perennial stream type, exergy and species rich-
ness were higher comparing with other clusters. In addition,
this cluster showed the higher ratio of FFGs comparing
with other clusters. In cluster TV including the sample from
the sites 4 and 6. Shannon diversity index was low com-
paring with other clusters. In cluster III including the sam-
ples collected during right after a heavy rain period, velo-
city was relatively high comparing with other clusters,
however, conductivity was the lowest in the cluster. In this
regards, SOM results also showed the variation of the
exergy depending upon natural environmental changes in a
small stream, indicating that SOM could be used for pat-
terning the changes in exergy as well as for extracting in-
formation on relations between community and exergy data
(Park er al. 2001).

In conclusion, exergy as a unique and efficient expression
of energy status in ecosystems could be an alternative to re-
present the status of community development. In addition,

the clustering of exergy values based on the different FFGs

in the trained SOM was efficient in showing the changes of

exergy through the spatial and temporal variations and nat-
ural disturbances such as floods and drought. Therefore, this
could be effectively used for diagnosing various conditions
of a community and setting up efficient management strate-

gies for the target ecosystem.
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