• Title/Summary/Keyword: artificial image

Search Result 1,397, Processing Time 0.027 seconds

Preparation of image databases for artificial intelligence algorithm development in gastrointestinal endoscopy

  • Chang Bong Yang;Sang Hoon Kim;Yun Jeong Lim
    • Clinical Endoscopy
    • /
    • v.55 no.5
    • /
    • pp.594-604
    • /
    • 2022
  • Over the past decade, technological advances in deep learning have led to the introduction of artificial intelligence (AI) in medical imaging. The most commonly used structure in image recognition is the convolutional neural network, which mimics the action of the human visual cortex. The applications of AI in gastrointestinal endoscopy are diverse. Computer-aided diagnosis has achieved remarkable outcomes with recent improvements in machine-learning techniques and advances in computer performance. Despite some hurdles, the implementation of AI-assisted clinical practice is expected to aid endoscopists in real-time decision-making. In this summary, we reviewed state-of-the-art AI in the field of gastrointestinal endoscopy and offered a practical guide for building a learning image dataset for algorithm development.

Feature-based Image Analysis for Object Recognition on Satellite Photograph (인공위성 영상의 객체인식을 위한 영상 특징 분석)

  • Lee, Seok-Jun;Jung, Soon-Ki
    • Journal of the HCI Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.35-43
    • /
    • 2007
  • This paper presents a system for image matching and recognition based on image feature detection and description techniques from artificial satellite photographs. We propose some kind of parameters from the varied environmental elements happen by image handling process. The essential point of this experiment is analyzes that affects match rate and recognition accuracy when to change of state of each parameter. The proposed system is basically inspired by Lowe's SIFT(Scale-Invariant Transform Feature) algorithm. The descriptors extracted from local affine invariant regions are saved into database, which are defined by k-means performed on the 128-dimensional descriptor vectors on an artificial satellite photographs from Google earth. And then, a label is attached to each cluster of the feature database and acts as guidance for an appeared building's information in the scene from camera. This experiment shows the various parameters and compares the affected results by changing parameters for the process of image matching and recognition. Finally, the implementation and the experimental results for several requests are shown.

  • PDF

Image Super-Resolution for Improving Object Recognition Accuracy (객체 인식 정확도 개선을 위한 이미지 초해상도 기술)

  • Lee, Sung-Jin;Kim, Tae-Jun;Lee, Chung-Heon;Yoo, Seok Bong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.6
    • /
    • pp.774-784
    • /
    • 2021
  • The object detection and recognition process is a very important task in the field of computer vision, and related research is actively being conducted. However, in the actual object recognition process, the recognition accuracy is often degraded due to the resolution mismatch between the training image data and the test image data. To solve this problem, in this paper, we designed and developed an integrated object recognition and super-resolution framework by proposing an image super-resolution technique to improve object recognition accuracy. In detail, 11,231 license plate training images were built by ourselves through web-crawling and artificial-data-generation, and the image super-resolution artificial neural network was trained by defining an objective function to be robust to the image flip. To verify the performance of the proposed algorithm, we experimented with the trained image super-resolution and recognition on 1,999 test images, and it was confirmed that the proposed super-resolution technique has the effect of improving the accuracy of character recognition.

Design of Artificial Intelligence Course for Humanities and Social Sciences Majors

  • KyungHee Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.4
    • /
    • pp.187-195
    • /
    • 2023
  • This study propose to develop artificial intelligence liberal arts courses for college students in the humanities and social sciences majors using the entry artificial intelligence model. A group of experts in computer, artificial intelligence, and pedagogy was formed, and the final artificial intelligence liberal arts course was developed using previous research analysis and Delphi techniques. As a result of the study, the educational topics were largely composed of four categories: image classification, image recognition, text classification, and sound classification. The training consisted of 1) Understanding the principles of artificial intelligence, 2) Practice using the entry artificial intelligence model, 3) Identifying the Ethical Impact, and 4) Based on learned, team idea meeting to solve real-life problems. Through this course, understanding the principles of the core technology of artificial intelligence can be directly implemented through the entry artificial intelligence model, and furthermore, based on the experience of solving various real-life problems with artificial intelligence, and it can be expected to contribute positively to understanding technology, exploring the ethics needed in the artificial intelligence era.

Development of GRD Measurement Method using Natural Target in Imagery (영상 내 자연표적을 이용한 GRD 측정기법 개발)

  • Kim, Jae-In;Jeong, Jae-Hoon;Kim, Tae-Jung
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.5
    • /
    • pp.527-536
    • /
    • 2010
  • This paper reports a reliable GRD (Ground Resolved Distance) measurement method of using natural targets instead of the method using artificial targets. For this, we developed an edge profile extraction technique suitable for natural targets. We demonstrated the accuracy and stability of this technique firstly by comparing GRD values generated by this technique visually inspected GRD values for artificial targets taken in laboratory environments. We then demonstrated the feasibility of GRD estimation from natural targets by comparing GRD values from natural targets to those from artificial targets using satellite images containing both artificial and natural targets. The GRDs measured from the proposed method were similar to the values from visual inspection and the GRDs measured from the natural targets were similar to the values from artificial targets. These results support our proposed method is able to measure reliable GRD from natural targets.

A Comparison of Landscape Evaluation between the Internet and Slide Method (인터넷과 슬라이드를 이용한 경관평가방법의 비교)

  • Huh, Joon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.29 no.5
    • /
    • pp.20-27
    • /
    • 2001
  • The purpose of this study is to investigate and compare the validity and the reliability of the visual simulation method using the internet. For this. the evaluation of the artificial and natural landscape through the medium of color slides are compared with the internet survey. Data is analysed through the comparison of t-test between the two media by landscape type, and spatial image is analysed by factor analysis algorithm. Principle component analysis using Varimax Method is applied for extraction and factor rotation respectively. The results of this study can be summarized as follows; There are no statistical differences between the two methods with artificial and natural landscape in the total data that included second tests. Factors covering the spatial image are found to be \`aesthetic\`, \`spatial shape\`, and \`familiarity\`. Total variance is obtained as 66.4%. There are no statistical differences between the two methods in 2/3 of the cases. In the case of far view of artificial landscape, the results of the t-test show that the two methods are exactly the same. Especially in the case of the artificial far landscape shows no difference of all factors between two methods. There are no differences between first and second tests of the same media and the same landscape type. And it shows the reliability of this method. These results suggest that the probability that the internet can be used as a medium of landscape evaluation and gathering information on anyone\`s landscape image. Simulation techniques with the internet survey method should be further developed for practical application.

  • PDF

DiLO: Direct light detection and ranging odometry based on spherical range images for autonomous driving

  • Han, Seung-Jun;Kang, Jungyu;Min, Kyoung-Wook;Choi, Jungdan
    • ETRI Journal
    • /
    • v.43 no.4
    • /
    • pp.603-616
    • /
    • 2021
  • Over the last few years, autonomous vehicles have progressed very rapidly. The odometry technique that estimates displacement from consecutive sensor inputs is an essential technique for autonomous driving. In this article, we propose a fast, robust, and accurate odometry technique. The proposed technique is light detection and ranging (LiDAR)-based direct odometry, which uses a spherical range image (SRI) that projects a three-dimensional point cloud onto a two-dimensional spherical image plane. Direct odometry is developed in a vision-based method, and a fast execution speed can be expected. However, applying LiDAR data is difficult because of the sparsity. To solve this problem, we propose an SRI generation method and mathematical analysis, two key point sampling methods using SRI to increase precision and robustness, and a fast optimization method. The proposed technique was tested with the KITTI dataset and real environments. Evaluation results yielded a translation error of 0.69%, a rotation error of 0.0031°/m in the KITTI training dataset, and an execution time of 17 ms. The results demonstrated high precision comparable with state-of-the-art and remarkably higher speed than conventional techniques.

Application of Artificial Intelligence in Capsule Endoscopy: Where Are We Now?

  • Hwang, Youngbae;Park, Junseok;Lim, Yun Jeong;Chun, Hoon Jai
    • Clinical Endoscopy
    • /
    • v.51 no.6
    • /
    • pp.547-551
    • /
    • 2018
  • Unlike wired endoscopy, capsule endoscopy requires additional time for a clinical specialist to review the operation and examine the lesions. To reduce the tedious review time and increase the accuracy of medical examinations, various approaches have been reported based on artificial intelligence for computer-aided diagnosis. Recently, deep learning-based approaches have been applied to many possible areas, showing greatly improved performance, especially for image-based recognition and classification. By reviewing recent deep learning-based approaches for clinical applications, we present the current status and future direction of artificial intelligence for capsule endoscopy.

A Study of Artificial Intelligence Generated 3D Engine Animation Workflow

  • Chenghao Wang;Jeanhun Chung
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.286-292
    • /
    • 2023
  • This article is set against the backdrop of the rapid development of the metaverse and artificial intelligence technologies, and aims to explore the possibility and potential impact of integrating AI technology into the traditional 3D animation production process. Through an in-depth analysis of the differences when merging traditional production processes with AI technology, it aims to summarize a new innovative workflow for 3D animation production. This new process takes full advantage of the efficiency and intelligent features of AI technology, significantly improving the efficiency of animation production and enhancing the overall quality of the animations. Furthermore, the paper delves into the creative methods and developmental implications of artificial intelligence technology in real-time rendering engines for 3D animation. It highlights the importance of these technologies in driving innovation and optimizing workflows in the field of animation production, showcasing how they provide new perspectives and possibilities for the future development of the animation industry.

Digital Image Processing of Side Scan Sonar for Underwater Man-made Structure (수중 인공구조물에 대한 사이드스캔소나 탐사자료의 영상처리)

  • Shin, Sung-Ryul;Lim, Min-Hyuk;Kim, Kwang-Eun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.344-354
    • /
    • 2009
  • Side scan sonar using acoustic wave plays a very important role in the underwater, sea floor, and shallow marine geologic survey. In this study, we have acquired side scan sonar data for the underwater man-made structures, artificial reefs and fishing grounds, installed and distributed in the survey area. We applied digital image processing techniques to side scan sonar data in order to improve and enhance an image quality. We carried out digital image processing with various kinds of filtering in spatial domain and frequency domain. We tested filtering parameters such as kernel size, differential operator, and statistical value. We could easily estimate the conditions, distribution and environment of artificial structures through the interpretation of side scan sonar.