
INTRODUCTION 

Artificial intelligence (AI) is a concept that was first intro-
duced in the 1950s and which has, in the past decade, made 
great strides driven by the accumulation of a large amount of 
data that can train ever more sophisticated AI, as well as by 
improved computational power leveraged through hardware 
innovations, including graphic processing units, and advances 
in deep learning (DL) technology. Various AI applications have 
been reported in the field of gastrointestinal (GI) endoscopy, 
especially with the use of DL technology, including convolu-
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tional neural networks (CNNs). Rapid advances in AI technol-
ogy in recent years have increased the need for endoscopists to 
become familiar with AI and its data structure. This article in-
troduces the basic concepts of AI, machine learning (ML), and 
DL with a focus on the clinical applications of AI in the field of 
GI endoscopy. Additionally, we provide guidance for building 
imaging datasets for developing DL models and discuss various 
challenges posed by this process. 

MACHINE LEARNING 

AI refers to the ability of a computer to perform tasks in a 
manner similar to human intelligence. The field has gradually 
grown, and is now subdivided into several areas. Among them, 
ML refers to a system that can learn from data without explicit 
programming.1 Samuel2 defined ML as “Programming a com-
puter to learn from experience that should eventually eliminate 
the need for much of this detailed programming effort.” ML 
is traditionally derived from pattern-recognition systems and 
possesses an algorithm that recognizes features or patterns as-
sociated with data to make specific predictions, with repeated 
practice leading to improved performance. 
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In contrast with traditional computer programs, ML models 
are not programmed with rules, but learn from examples.3 For 
a particular task, examples are provided in the form of inputs 
(features) and outputs (labels). Using a learning-from-obser-
vation algorithm, a computer can determine how to perform 
mapping from a label function to generate a model that can 
generalize information so that it can perform the task consis-
tently with unfamiliar input features. When training the model, 
features are converted into expected labels through complex, 
multilayered mathematical functions. The algorithm deter-
mines how to value each parameter to ensure that the model 
accurately reflects reality and makes more precise predictions. 
ML can be roughly divided into supervised and unsupervised 
models. Supervised learning takes place by the provision of 
labeled data that provides the correct answer. In contrast, un-
supervised methods are designed for automated clustering of 
similar data based on commonalities. Therefore, unsupervised 
learning can be used as a primary tool for identifying appropri-
ate features following supervised learning. ML has limitations 
in that it can only learn from the data in the training set; as a 
result, the developed model might not be able to make accurate 
predictions if new examples arise that are different from those 
in the training set. 

DEEP LEARNING AND CONVOLUTIONAL 
NEURAL NETWORK 

Among the ML methods, artificial neural networks (ANNs) 
mimic the information processing of the human brain. Each 
neuron is a computing unit, and all neurons are connected to 
build a sophisticated network. Neurons exchange electrical 
information signals, and only when an input signal exceeds a 
threshold, the signal is transmitted to the next neuron. McCull-
och and Pitts4 first proposed this concept in 1943. Over time, 
the theory has emerged that learning can selectively strengthen 
the synaptic activation between certain neurons. In this theory, 
each input can be multiplied by a weighting factor, and all the 
multiplied inputs are then summed. An advantage of ANN is 
that it can model highly nonlinear relationships between inputs 
and desired outputs by combining many neurons into layers.5 
As one of the ML techniques, DL, which is based on ANN, 
emerged relatively quickly around 2010. In 2006, Hinton and 
Salakhutdinov6 named a multilayered neural network com-
posed of several hidden layers a “deep neural network (DNN)”, 
and the learning method based on DNN was first named DL. 

DL is an ML algorithm that extracts and transforms features 
by using multiple layers of nonlinear processes. “Feature ex-
traction” is the process of selecting variables that are likely to 
have predictive power for an objective, and “Transformation” is 
the process of changing the data in a more effective way to build 
a model. Recently, its performance has been improved such that 
it is now possible to design ANNs with tens to hundreds of lay-
ers with ease. 

In the field of medical image processing, CNNs are the most 
commonly used ANN structure for image analysis. CNNs are 
DNNs specialized in image recognition technology, which were 
first introduced by Le Cun’s team.7 CNNs use the principles 
of image processing and recognition used by the brain’s visual 
cortex. They can gradually learn high-level features through 
complex connections that mimic the action of the human vi-
sual cortex.8 Put more simply, the CNN model consists of three 
layers: (1) convolutional layer, (2) pooling layer, and (3) final 
classification (Fig. 1). During convolution, the kernel, an image 
filter of a certain size, scans the entire image and passes the 
output value to the next node. The next step, pooling, reduces 
the dimensions of the feature. Features that are effective for 
learning are selected by this process. A feature map presented 
through these processes enters the fully connected layers, and 
the final classification result of an image can be derived. Class 
activation mapping refers to the location information within an 
image that allows a CNN to predict a specific class, and is the 
output of a particular convolution layer. Activation maps can be 
used for the visualization of CNNs (Fig. 2). 

In this era of big data, the amount of data to be analyzed us-
ing these computations is unimaginably large. With dramatic 
improvements in computing power and graphic processing 
units, more complex calculations are now possible, including 
in DL. AlexNet, the winner of the ImageNet Large-Scale Visual 
Recognition Challenge competition in 2012, is a DL algorithm 
with eight hidden layers. It has increased the recognition rate of 
conventional ML algorithms, which remained in the 70% over 
the past 10 years, to 85% in one significant leap.9 Microsoft’s 
ResNet, which won the ImageNet Large-Scale Visual Recogni-
tion Challenge in 2015, has 152 deeper layers and has dramat-
ically improved performance in various areas such as image 
recognition and facial recognition.10 

CNN models are being applied to images and medical data 
analysis in various areas.11,12 AI in medical imaging has been 
investigated in several fields, including radiology, neurology, 
orthopedics, pathology, and gastroenterology. Since the devel-
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opment of AlexNet in 2012, DL in the image recognition field 
has mostly utilized CNNs. Although it is not yet a top player in 
medical imaging, image recognition studies in GI endoscopy 
are actively underway and have surprisingly good potential. 
In the next section, we introduce various cases in which DL is 
used in GI endoscopy. 

ARTIFICIAL INTELLIGENCE IN 
GASTROINTESTINAL ENDOSCOPY 

ML techniques are used in various areas of GI endoscopy. Since 
adenoma detection rates (ADRs) during colonoscopy and med-
ical decision-making regarding detected polyps vary greatly 
depending on the experience and skill of the endoscopist, sev-
eral studies have introduced computer-assisted diagnostic tech-
niques that can reduce variability between endoscopists and 
potentially improve ADRs (Table 1).13-31 

Since the doctor who performs the endoscopy is a human, 
simple errors can occur due to fatigue caused by overwork and/
or special conditions. The rate of polyps missed on colonoscopy 
is reportedly as high as 25%.32 Certain types of polyps are more 
likely to be missed and may result in progression to cancer. An 
enormous advantage of endoscopic diagnosis using AI is that 
polyp detection or, theoretically, the decision-making process, 

Fig. 1. Layers of the convolutional neural networks.

Fig. 2. Class activation map of a capsule endoscopy image. (A) Ero-
sions with depression of the mucosa are highlighted in red. (B) De-
tection of vascular lesions on the small-bowel mucosa is visualized in 
a class activation map.
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Table 1. Published studies on the application of artificial intelligence in the field of gastrointestinal endoscopy
Type Aims Dataset Result Study
Colonoscopy Polyp detection 14,000 Training images from 100 colonosco-

py videos
Sensitivity, 98.79%; specificity, 

98.52%; accuracy, 98.65%
Billah et al. (2017)13

Polyp detection 1,104 Nonpolyp images, 826 polyp images 
including white-light and narrow-band 
imaging

Accuracy, 87.3% Zhang et al. (2017)14

Polyp detection (real-time) 223 Narrow-band videos for training, 40 
videos for validation, 125 videos for testing

Sensitivity, 98%; specificity, 
83%; accuracy, 94%

Byrne et al. (2019)15

NICE classification
Real-time computer-aided 

detection of adenoma
Randomized clinical trial 30% Increase of adenoma 

detection
Repici et al. (2020)16

Differentiating adenomas 
from hyperplastic polyps

Separate series of 125 videos of consecutively 
encountering diminutive polyps

Accuracy, 94%; sensitivity, 
98%; specificity, 83%; NPV, 
97%; PPV, 90%

Komeda et al. (2021)17

Polyp detection 73 Colonoscopy videos (total duration, 997 
min; 1.8 million frames) from 73 patients, 
which included 155 colorectal polyps

Accuracy, 76.5%; sensitivity, 
90.0%; specificity, 63.3%

Misawa et al. (2018)18

Polyp detection Training data from 1,290 patients, and valida-
tion data from 27,113 images from 1,138 
patients

Sensitivity, 94.38%; specificity, 
95.92%; AUROC, 0.984

Wang et al. (2018)19

EGD Helicobacter pylori infection 596 From 74 patients negative for infection 
and 65 patients positive

Sensitivity, 86.7%; specificity, 
86.7%; AUROC, 0.96

Itoh et al. (2018)20

Helicobacter pylori infection 32,208 From 1,015 patients negative for infec-
tion and 753 patients positive

Sensitivity, 88.9%; specificity, 
87.4%; accuracy, 87.7%

Shichijo et al. (2017)21

Endocytoscopy 69,142 Images (520-fold magnification) for 
training

Sensitivity, 96.9%; specificity, 
100.0%; accuracy, 98%

Kudo et al. (2020)22

Detection of early neoplastic 
lesions in Barrett’s esophagus

100 Images from 44 patients with Barrett’s 
esophagus

Sensitivity, 0.86; specificity 
0.87

van der Sommen et al. 
(2016)23

Detection of esophageal can-
cer

8,428 Training images of esophageal cancer 
from 384 patients, 1,118 test images for 47 
patients with 49 esophageal cancers and 50 
patients without esophageal cancer

Sensitivity, 98%; PPV, 40%; 
NPV, 95%; accuracy, 98%

Horie et al. (2019)24

Identifying and delineating 
EGC

Retrospectively collected and randomly 
selected 66 EGC M-NBI images and 60 
non-cancer M-NBI images into a training 
set and 61 EGC M-NBI images and 20 
non-cancer M-NBI images into a test set

Accuracy, 96.3%; PPV, 98.3%; 
sensitivity, 96.7%; specificity, 
95%

Kanesaka et al. (2018)25

Detecting EGC without blind 
spots during EGD

3,170 Gastric cancer and 5,981 benign images 
to train the DCNN to detect EGC 

Accuracy, 92.5%; sensitivity, 
94.0%; specificity, 91.0%; 
PPV, 91.3%; NPV, 93.8%

Wu et al. (2019)26

24,549 Images from different parts of stom-
ach to train the DCNN to monitor blind 
spots

Determining EGC invasion 
depth and screening patients 
for endoscopic resection

790 Images for a development dataset and 
another 203 images for a test dataset

AUROC, 0.94; sensitivity, 
76.47%; specificity, 95.56%; 
accuracy, 89.16%; PPV, 
89.66%; NPV, 88.97%

Zhu et al. (2019)27

Capsule  
endoscopy

Multiple lesion detection 158,235 Images for training Sensitivity, 99.8%; specificity, 
100.0%

Ding et al. (2019)28

113,268,334 Images for testing
Small-bowel hemorrhage 9,672 Images for training Sensitivitiy, 98.9%; recall (true 

positive rate), 100.0%
Li et al. (2017)29

2,418 Images for testing
Small-bowel erosions 5,360 Images for training Sensitivity, 88.2%; specificity, 

90.9%; accuracy, 90.8%
Aoki et al. (2019)30

10,440 Images for testing
Crohn’s disease 14,112 Images for training Sensitivity, 96.8%; specificity, 

96.6%; accuracy, 96.7%
Klang et al. (2020)31

3,528 Images for testing

NICE, Narrow-band Imaging International Colorectal Endoscopic; NPV, negative predictive value; PPV, positive predictive value; AUROC, area under 
the receiver operating characteristic curve; EGD, esophagogastroduodenoscopy; EGC, early gastric cancer; M-NBI, magnifying endoscopy with nar-
row-band imaging; DCNN, deep convolutional neural network.
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is not susceptible to fatigue-related errors. 
The application of the CNN algorithm to polyp detection 

appears to be very promising. Billah et al.13 utilized images from 
a public dataset to develop an algorithm that achieved a polyp 
detection sensitivity of 98% to 99%. The automated detection 
of polyps outperformed the endoscopist by 86% to 74% in 
terms of accuracy.14 Despite their high false-positive rates, all 
of these studies showed promising results on the use of CNN 
to identify colon polyps. For trainee endoscopists just starting 
to learn colonoscopy, computer-assisted diagnostic technolo-
gies employing AI can be a significant help, not only for polyp 
detection, but also for characterizing the detected polyp. This 
improves ADRs and leads to appropriate decision-making re-
garding follow-up examinations and treatment plans. 

The ultimate goal of AI algorithms in the field of colonosco-
py is real-time detection of polyps. Real-time detection should 
exhibit high sensitivity and specificity and provide practical 
information to the operator without interfering with the opera-
tion. In addition, appropriate hardware performance for the AI 
system should be available to ensure low latency time between 
polyp detection and screen display. 

Urban et al.33 developed an ImageNet-based CNN algorithm 
and validated it using 11 colonoscopy videos. The algorithm’s 
performance yielded a sensitivity of 97% and a specificity of 
96%, executing at 10 microseconds per frame. Using nar-
row-band image (NBI) video frames and videos, the algorithm 
developed by Byrne et al.15 showed a sensitivity of 98%, a spec-
ificity of 83%, and an accuracy of 94% for 125 videos of 106 
polyps. Recently, Repici et al.16 performed a randomized trial 
with 685 subjects undergoing colonoscopy, using a real-time 
polyp detection algorithm. The computer-aided detection sys-
tem improved the ADR from 40.4% to 54.8%, particularly for 
diminutive polyps (<5 mm), but did not increase the physician’s 
withdrawal time. 

AI technology can also be used to characterize the detected 
polyps. One study has shown excellent performance of AI tech-
nology in discriminating whether the detected polyp is an ade-
nomatous polyp, which requires removal, a hyperplastic polyp, 
which does not require removal, and any additional patholog-
ical features.17 In cases where a resected polyp is considered to 
have low clinical significance and may not require additional 
pathological review, real-time histological AI confirmation may 
help clinicians avoid unnecessary pathological verification of 
the resected polyp. This strategy can reduce the cost of unnec-
essary pathological examinations.  

While colon polyps are lesions with clear borders, target 
lesions in the upper GI tract are generally subtle and difficult 
to find.34 Surprisingly, the difference between well-trained AI 
and a general endoscopist may be even greater in this scenario. 
Several studies have been published on the probability-based 
detection of suspicious gastric tumor lesions and the detection 
of Helicobacter pylori-infected gastric mucosa.20,21 For detecting 
neoplastic lesions in the stomach, AI achieved a pooled area 
under the curve of 0.96, with a pooled sensitivity of 92.1% and 
specificity of 95.0% in a recent meta-analysis,35 superior to the 
efficacy of endoscopists. On the other hand, AI has some diffi-
culties detecting and discriminating between neoplastic lesions 
of the esophagus, and this was particularly noticeable for Paris 
type 0-IIb (superficial-flat) lesions.36 Special imaging techniques 
such as NBI are helpful for developing AI algorithms to detect 
such esophageal lesions.35 

Endocytoscopy (H290ECI; Olympus, Tokyo, Japan) is a 
newly introduced in vivo contact-type microscopic imaging 
modality that provides real-time cellular-level images during 
endoscopy.37,38 A multicenter study in Japan22 has validated the 
diagnostic efficacy of EndoBRAIN (Cybernet Systems Co., To-
kyo, Japan), an AI-based system that analyzes cell nuclei, crypt 
structures, and microvessels in endoscopic images during the 
identification of colonic neoplasms. EndoBRAIN identified co-
lonic lesions with 96.9% sensitivity and 100% specificity when 
pathology findings were used as the gold standard. 

Small-bowel capsule endoscopy is another field that is ex-
pected to benefit from advances in AI pattern-recognition 
technology. Since capsule endoscopy interpretation is a rela-
tively tedious, time-consuming, and error-prone process, AI 
algorithms are highly likely to be used in clinical practice in 
the near future.39 Despite the high necessity and high expecta-
tions, training a reliable AI algorithm for capsule endoscopy 
has faced many obstacles, foremost among which are the low 
resolution of capsule endoscopy images and blurred pictures 
that are randomly taken during passive movement through the 
small bowel. Image enhancement technologies are promising 
tools for overcoming obstacles in developing an effective cap-
sule endoscopy AI. “Image enhancing” is designed to maximize 
the efficacy of AI-learning by generating optimized images for 
learning from existing suboptimal images. Several image-en-
hancing methods have been developed, including three-dimen-
sional (3D) image reconstruction, chromo-endomicroscopy, 
and image resolution improvement software for denoising and 
de-blurring. For example, the efficacy of 3D reconstruction 
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with dual-camera capsules (MiroCam MC 4000; IntroMedic, 
Seoul, Korea) was prospectively validated and appeared to be 
exceptionally useful in the characterization of subepithelial 
tumors.40 In a recent multicenter retrospective study,28 a CNN 
outperformed human gastroenterologists in multiple lesion de-
tection with capsule endoscopy (sensitivity, 99.88% vs. 74.57%; 
p<0.001). The CNN performed the task in 5.9 minutes on av-
erage, while endoscopists required a manual reading time of 
96.6 minutes. Active locomotion capsule endoscopy is used to 
control the capsule’s position freely using magnetic force, along 
with automated reading by an AI system, which is also in devel-
opment.41 

Automating the endoscopic assessment of ulcerative colitis 
(UC) is another area of AI research.42 Several recent studies 
have reported a CNN system to assess endoscopic severity in 
UC.43,44 Ozawa et al.45 evaluated a CNN-based algorithm for 
endoscopically classifying disease activity in 841 patients with 
UC. The system selectively pointed out Mayo class 2–3 images 
severely affected by UC with an area under the curve of 0.86 
(95% confidence interval, 0.84–0.87). 

CONSIDERATIONS FOR THE BUILDING OF 
AN AI-LEARNING DATASET 

The establishment of separate training, validation and test 
sets 
Datasets of acquired images should be divided according to 
their purpose,46 which are usually training, validation, and 
testing. The training set is used to learn specific patterns and 
their labels from images.47 This set is used when training an 
ML model by iteratively updating model parameters until the 
model best fits the data. The validation set is sometimes used 
interchangeably with a tuning set. After learning a specific pat-
tern, it is used to verify whether the model is underfitting or 
overfitting. The “hyperparameters” of the model are then tuned. 
In medical research, models should be validated using datasets 
that are completely independent of training or validation sets. 
The test set is used to evaluate the model’s performance before 
applying the ML model in clinical practice. Test sets cannot be 
used to train or tune ML models, including hyperparameters or 
ML method selection. The test set is used to avoid selection bias 
and to report unbiased predictions once the design of the mod-
el is decided based on the performance of the validation set.47 

It is also necessary to consider how to proportionally separate 
the entire image data into each category. The basic rule is that 

the validation and test sets must be sufficiently large to reflect 
real-world variability. The remaining data are then distributed 
to the training set. If the size of the total data is small, it is ap-
propriate to distribute a relatively large ratio to the validation 
and testing sets compared with the training set. By contrast, if 
the data size is large, a greater weight can be used for the train-
ing set. 

Sample size and class imbalance problems 
It is important to ensure sufficient sample size. It is desirable 
to include a large dataset with various features for training and 
validation.48 The optimal sample size may vary depending on 
the task. DL requires a larger sample size than traditional ML 
methods to optimize performance. This is necessary to mini-
mize the risk of overfitting, which will be discussed later. Using 
data from multiple sources, rather than data from a single data 
storage, can reduce the sample bias and increase the generaliz-
ability of the algorithm. To obtain images, one can also consider 
using many open-source datasets. 

However, in practice, determining the amount of data re-
quired should take several complicating factors into consider-
ation, including task difficulty, input data types, and quality of 
labels of the work.47 In reality, the cost of obtaining and labeling 
data is sometimes considered as important as the design of the 
AI model. 

Class imbalance is often a problem in real data, occurring 
when there are large differences in the amount of data possessed 
by each category. For example, if a researcher collects images of 
cases with lesions and data from subjects without the disease, 
lesions appear infrequently and in many different conditions; 
therefore, collecting sufficient images for certain diagnoses is 
not easy. Most ‘real-world’ clinical data have a class imbalance 
problem. Techniques for class balancing in DL include ‘weight 
balancing’ and ‘over and undersampling’. Sampling is a simple 
method that a general researcher can perform without the need 
for a computer engineer. There is an undersampling method 
that selects only a portion of the majority class and a method of 
oversampling makes as much data as possible available by mak-
ing multiple copies of the minority class. 

The problem of overfitting 
Overfitting occurs when the ML model is overtrained on the 
training data itself, and is not generalizable to new datasets. In 
theory, if a sufficiently large number of parameters are input 
into a mathematical model, any dataset can fit the model. Such 
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models may not perform well clinically when their fit depends 
on these additional variables. If the model is applied to a dataset 
that differs from the training set, prediction may fail. 

Techniques such as reducing the number of parameters in a 
model or preventing a model from overfitting a dataset are col-
lectively called “regularization”. An example is the smoothing 
of a noisy curve. Regularization techniques include ensemble, 
data augmentation, early stopping, fine-tuning, warm start, and 
parameter regularization. “Ensemble” is a technique to improve 
the stability of the final prediction by combining multiple out-
puts of a ML model. This is achieved by averaging the output 
with the same input data. 

Most regularization techniques affect the learned parame-
ters of ML models. Prior to using these techniques, additional 
hyperparameters must be set. When randomness is controlled 
during ML training, modifying the hyperparameter settings 
completely determines the final values of the learned param-
eters. Similarly, changing the hyperparameters and training a 
new ML model can change the values of the learned parame-
ters. Because hyperparameters have a large impact on model 
performance, tuning them is important in ML research. 

Data preparation, curation, and annotation 
The quality of the reference training material is the most im-
portant factor in determining the performance of a model. 
However, the determination of reference standards is often 
subjective and can lead to interobserver variability. This vari-
ability can be reduced through adjudication by an experienced 
panel of experts. In addition, high-quality reference standards 
are important for demonstrating the model performance. To 
avoid bias, the reference standards should be determined in-
dependently. Clinicians involved in grading images should be 
blinded to ML predictions. Even a small difference in the model 
performance can potentially affect many patients. 

A diversity of images and lack of bias have been suggested 
as essential requirements for building a high-quality image 
database. The lack of these features can skew the algorithm’s 
ability to correctly categorize input variables.49 In addition, dif-
ferent models trained with datasets independently generated by 
various institutions might present low predictive power when 
applied to heterogeneous groups. Such isolated data are termed 
“database islands”. The advent of artificial image augmentation 
technologies, such as generative adversarial networks that per-
form flipping, cropping, resizing, and blurring of existing imag-
es, have been introduced and utilized to diversify and increase 

the number of datasets. 
Problems with incomplete data, duplicate data, and other 

dataset formats must be addressed. This can be time-consum-
ing and labor-intensive, particularly for large datasets. Learning 
materials can be independently labeled by consensus to estab-
lish a reference standard or “ground truth”. In addition, one may 
need to collect additional data to confirm the pathology find-
ings and medical records. To optimize efficiency at this stage, it 
can be useful to identify the variables that are most relevant to 
the goal. 

Annotating secured video or image data is labor-intensive. 
Several methods of annotation are employed, including bound-
ing boxes, polygonal segmentation, semantic segmentation, 3D 
cuboids, lines, and splines. Sharing a standardized annotation 
tool and common reference standards among readers partici-
pating in this process is important to ensure the quality of the 
data and to save time (Fig. 3). Because a small dataset is usually 
not adequate to achieve sufficient AI performance, multiple or-
ganizations should share large-scale datasets and perform joint 
annotation. To this end, there has been ongoing discussion on 
whether to build a large public dataset suitable for each health-
care community. As an example of this type of effort, Ding et 
al.28 collected 108 capsule endoscopy cases from 77 medical 
centers in 2019. They labeled and annotated over 158,000 im-
ages as either normal or as one of 10 abnormal categories for 
training. They used more than 100 million images for valida-
tion and developed a multiple-lesion-detecting ResNet-based 
algorithm for capsule endoscopy reading. 

Data storage and federated learning 
Data storage and training of the model can be performed on 
local hardware or remotely on a cloud-computing platform. 
Unified learning is a new technique that can train a single al-
gorithm using data from multiple distributed devices, such as 
multiple local servers, at different sites, without the need to ex-
change or transmit images to a central repository. 

Federated learning (FL) is a new learning paradigm that al-
lows developers and organizations to train DNNs using distrib-
uted training data from multiple locations. FL has two signifi-
cant advantages: data privacy and communication efficiency. In 
particular, FL has gained increasing attention from healthcare 
AI developers. FL makes it possible to use clinical data from 
hospitals for learning without fear of breaching patient confi-
dentiality, so that developers can easily overcome legal and eth-
ical barriers. In addition, FL can reduce the network traffic bur-
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den as the optimized model is redistributed by sharing only the 
necessary information, without sharing all clinical data directly. 
Block chain technology is expected to be used in conjunction 
with FL to record audit trails in the future. 

Ethical issues 
Ethical issues cannot be avoided when constructing AI datasets. 
When attempting to use endoscopy results as learning data, it 
is necessary to obtain the consent of individual patients. There-
fore, wording should be inserted into the consent form prior to 
endoscopy, and the patient should be notified in advance. If a 
patient refuses to permit his or her endoscopy results to be used 
for AI-learning data, they cannot be integrated into the learning 
dataset. 

When constructing an infrastructure to share datasets be-
tween multiple institutions, processes such as de-identification 
and encryption are required. Clinical data transmitted to other 
institutions should not contain data that would allow patient 
identification. As data become accessible to many subjects from 
multiple institutions, the potential for invasion of individual 
privacy will increase significantly. In addition, the security and 
encryption of data transmitted between institutions are also 

important. The nature of data makes it a potential resource that 
can be directly linked to economic value. Thus, these data can 
be considered vulnerable to cyber-attack. 

FUTURE PERSPECTIVES 

The most important aspect in developing an AI model with 
good predictive power is the construction of a large-scale, 
high-quality dataset. Unfortunately, such high-quality datasets 
are still scarce. There is an old adage in computer science, “gar-
bage in, garbage out”, which is still valid even at the cutting-edge 
of modern computational power. It is difficult to build a dataset 
suitable for AI training at a single institution. Owing to the 
development of information and communication technologies, 
an infrastructure that can share a large amount of data is easily 
built. However, the foundation of a high-quality dataset that can 
be shared and utilized by multiple organizations is an import-
ant factor in accelerating the development of AI models that 
can exhibit the required performance levels. To ensure this, the 
legal regulations surrounding data sharing should be improved 
and a control tower should promote cooperation between in-
stitutions. The introduction of AI technology is expected to 

Fig. 3. Annotation process of capsule endoscopy images for the development of convolutional neural networks. Three categorial numbers will 
be applied to each image in terms of medical significance, degree of protrusion and type of lesion (e.g., vascular, inflammatory, polypoid) ac-
cording to a predefined reference standard.
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lead to an increase in medical expenses. In this regard, social 
consensus among doctors, patients, and insurance companies is 
necessary.50 

As of 2021, commercialized computer-aided diagnosis sys-
tems such as EndoBRAIN-EYE (Cybernet Systems Co.), DIS-
COVERY (PENTAX Medical, Tokyo, Japan), and the GI Genius 
module (Medtronic, Minneapolis, MN, USA) have been intro-
duced. These technologies support endoscopic diagnosis and 
are certified in Europe51; however, issues remain, as we do not 
know whether these computer-aided diagnostic technologies 
reduce the long-term incidence of GI diseases, mortality rate, 
or overall medical expense. In addition, these computer-aided 
diagnosis systems use their own isolated datasets for training, 
and are therefore not fully validated in real-world practice. The 
current evidence is based on retrospective studies, and is prone 
to a high risk of investigator-induced bias. Future prospective 
multicenter studies are mandatory before US Food and Drug 
Administration approval and widespread use. Currently, there 
are only a few prospective studies in this field. In particular, 
in Korea, a clinical prospective study is possible only through 
strict legal procedures for the medical use of the developed AI 
algorithm. AI’s multi-diagnosis accuracy and comprehensive-
ness have not yet reached this point, and many prospective 
clinical studies can be conducted only after overcoming these 
technical and legal issues. 

Privacy is an important aspect of AI. It is well known that a 
large amount of data is needed to train AI. However, most of 
these data include personal information. Personal information 
should be pseudonymized and used for learning. All external 
features, such as the eyes, nose, and mouth in the photographed 
images, should be deleted before use. Complex pseudonymiza-
tion is required, depending on the type of information, such 
as information removal. For this purpose, privacy-preserving 
machine-learning technology is also being actively investigated. 

CONCLUSIONS 

It is evident that, in the near future, the implementation of AI 
for GI endoscopy will benefit clinicians in various ways. From 
trainees’ education to real-time microscopic interpretation, 
computerized algorithms may serve as faithful assistants in the 
field of endoscopy. However, a sufficient amount of high-qual-
ity data is essential for the successful development of AI. The 
lack of learning data may explain why it has not yet reached 
clinical use in GI endoscopy. Engineers, endoscopists, and phy-

sicians should therefore understand how to build learning data-
sets for AI training. In the near future, we anticipate that we will 
achieve the goal of developing strong AI algorithms through 
the construction of multi-institutional, high-efficiency learning 
materials in tandem with the latest developments in cloud com-
puting and FL. 
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