Acknowledgement
Grant : Development of 4D reconstruction and dynamic deformable action model-based hyper-realistic service technology
References
- Iddan G, Meron G, Glukhovsky A, Swain P. Wireless capsule endoscopy. Nature 2000;405:417.
- Fisher LR, Hasler WL. New vision in video capsule endoscopy: current status and future directions. Nat Rev Gastroenterol Hepatol 2012;9:392-405. https://doi.org/10.1038/nrgastro.2012.88
- Kwack WG, Lim YJ. Current status and research into overcoming limitations of capsule endoscopy. Clin Endosc 2016;49:8-15.
- Szeliski R. Computer vision: algorithms and applications. London: Springer-Verlag; 2011.
- Liedlgruber M, Uhl A. Computer-aided decision support systems for endoscopy in the gastrointestinal tract: a review. IEEE Rev Biomed Eng 2011;4:73-88. https://doi.org/10.1109/RBME.2011.2175445
- Iakovidis DK, Koulaouzidis A. Software for enhanced video capsule endoscopy: challenges for essential progress. Nat Rev Gastroenterol Hepatol 2015;12:172-186. https://doi.org/10.1038/nrgastro.2015.13
- Iakovidis DK, Koulaouzidis A. Automatic lesion detection in capsule endoscopy based on color saliency: closer to an essential adjunct for reviewing software. Gastrointest Endosc 2014;80:877-883. https://doi.org/10.1016/j.gie.2014.06.026
- Lv G, Yan G, Wang Z. Bleeding detection in wireless capsule endoscopy images based on color invariants and spatial pyramids using support vector machines. Conf Proc IEEE Eng Med Biol Soc 2011;2011:6643-6646.
- Karargyris A, Bourbakis N. Detection of small bowel polyps and ulcers in wireless capsule endoscopy videos. IEEE Trans Biomed Eng 2011;58:2777-2786. https://doi.org/10.1109/TBME.2011.2155064
- Pan G, Yan G, Qiu X, Cui J. Bleeding detection in wireless capsule endoscopy based on probabilistic neural network. J Med Syst 2011;35:1477-1484. https://doi.org/10.1007/s10916-009-9424-0
- Mamonov AV, Figueiredo IN, Figueiredo PN, Tsai YH. Automated polyp detection in colon capsule endoscopy. IEEE Trans Med Imaging 2014;33:1488-1502. https://doi.org/10.1109/TMI.2014.2314959
- Harris C, Stephens M. A combined corner and edge detector. In: Proceedings of the Alvey Vision Conference 1988; 1988 Aug 31-Sep 2; Romsey, UK. Romsey: Roke Manor Research; 1988. p. 147-151.
- Canny J. A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 1986;8:679-698.
- Lowe DG. Object recognition from local scale-invariant features. In: Proceedings of the Seventh IEEE International Conference on Computer Vision; 1999 Sep 20-27; Kerkyra, Greece. Piscataway (NJ): IEEE; 1999. p. 1150-1157.
- Bay H, Ess A, Tuytelaars T, Van Gool L. Speeded-up robust features (SURF). Comput Vis Image Underst 2008;110:346-359. https://doi.org/10.1016/j.cviu.2007.09.014
- Mikolajczyk K, Schmid C. Scale & affine invariant interest point detectors. Int J Comput Vis 2004;60:63-86. https://doi.org/10.1023/B:VISI.0000027790.02288.f2
- Belongie S, Malik J, Puzicha J. Shape matching and object recognition using shape contexts. IEEE Trans Pattern Anal Mach Intell 2002;24:509-522. https://doi.org/10.1109/34.993558
- Dalal N, Triggs B. Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05); 2005 Jun 20-25; San Diego (CA), USA. Piscataway (NJ): IEEE; 2005. p. 886-893.
- Felzenszwalb PF, Girshick RB, McAllester D, Ramanan D. Object detection with discriminatively trained part-based models. IEEE Trans Pattern Anal Mach Intell 2010;32:1627-1645. https://doi.org/10.1109/TPAMI.2009.167
- Russakovsky O, Deng J, Su H, et al. ImageNet large scale visual recognition challenge. Int J Comput Vis 2015;115:211-252. https://doi.org/10.1007/s11263-015-0816-y
- Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. In: NIPS'12 Proceedings of the 25th International Conference on Neural Information Processing Systems; 2012 Dec 3-6; Lake Tahoe (NV), USA. Red Hook (NY): Curran Associates, Inc.; 2012. p. 1097-1105.
- Simonyan K, Zisserman A. Very deep convolutional networks for largescale image recognition. ArXiv e-prints 2014. https://ui.adsabs.harvard.edu/#abs/2014arXiv1409.1556S.
- Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2015 Jun 7-12; Boston (MA), USA. Piscataway (NJ): IEEE; 2015. p. 1-9.
- He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2016 Jun 27-30; Las Vegas (NV), USA. Piscataway (NJ): IEEE; 2016. p. 770-778.
- Urban G, Tripathi P, Alkayali T, et al. Deep learning localizes and identifies polyps in real time with 96% accuracy in screening colonoscopy. Gastroenterology 2018;155:1069-1078.e8. https://doi.org/10.1053/j.gastro.2018.06.037
- Redmon J, Divvala S, Girshick R, Farhadi A. You only look once: unified, real-time object detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2016 Jun 27-30; Las Vegas (NV), USA. Piscataway (NJ): IEEE; 2016. p. 779-788.
- Zou Y, Li L, Wang Y, Yu J, Li Y, Deng WL. Classifying digestive organs in wireless capsule endoscopy images based on deep convolutional neural network. In: 2015 IEEE International Conference on Digital Signal Processing (DSP); 2015 Jul 21-24; Singapore. Piscataway (NJ): IEEE; 2015. p. 1274-1278.
- Segui S, Drozdzal M, Pascual G, et al. Generic feature learning for wireless capsule endoscopy analysis. Comput Biol Med 2016;79:163-172. https://doi.org/10.1016/j.compbiomed.2016.10.011
- Jia X, Meng MQH. A deep convolutional neural network for bleeding detection in wireless capsule endoscopy images. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); 2016 Aug 16-20; Orlando (FL), USA. Piscataway (NJ): IEEE; 2016. p. 639-642.
- Li P, Li Z, Gao F, Wan L, Yu J. Convolutional neural networks for intestinal hemorrhage detection in wireless capsule endoscopy images. In: 2017 IEEE International Conference on Multimedia and Expo (ICME); 2017 Jul 10-14; Hong Kong, China. Piscataway (NJ): IEEE; 2017. p. 1518-1523.
- Leenhardt R, Vasseur P, Li C, et al. A neural network algorithm for detection of GI angiectasia during small-bowel capsule endoscopy. Gastrointest Endosc 2018 Jul 11 [Epub]. https://doi.org/10.1016/j.gie.2018.06.036.
- Yuan Y, Meng MQ. Deep learning for polyp recognition in wireless capsule endoscopy images. Med Phys 2017;44:1379-1389. https://doi.org/10.1002/mp.12147
- He JY, Wu X, Jiang YG, Peng Q, Jain R. Hookworm detection in wireless capsule endoscopy images with deep learning. IEEE Trans Image Process 2018;27:2379-2392. https://doi.org/10.1109/TIP.2018.2801119
- Iakovidis DK, Georgakopoulos SV, Vasilakakis M, Koulaouzidis A, Plagianakos VP. Detecting and locating gastrointestinal anomalies using deep learning and iterative cluster unification. IEEE Trans Med Imaging 2018;37:2196-2210. https://doi.org/10.1109/TMI.2018.2837002
- Oliva A, Torralba A. Modeling the shape of the scene: a holistic representation of the spatial envelope. Int J Comput Vis 2001;42:145-175. https://doi.org/10.1023/A:1011139631724
- Khan S, Yong SP. A comparison of deep learning and hand crafted features in medical image modality classification. In: 2016 3rd International Conference on Computer and Information Sciences (ICCOINS); 2016 Aug 15-17; Kuala Lumpur, Malaysia. Piscataway (NJ): IEEE; 2016. p. 633-638.
- Ojala T, Pietikainen M, Maenpaa T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 2002;24:971-987. https://doi.org/10.1109/TPAMI.2002.1017623
- Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 2014;15:1929-1958.
- Cogswell M, Ahmed F, Girshick R, Zitnick L, Batra D. Reducing overfitting in deep networks by decorrelating representations. ArXiv e-prints 2015. http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:1511.06068.
- Kominami Y, Yoshida S, Tanaka S, et al. Computer-aided diagnosis of colorectal polyp histology by using a real-time image recognition system and narrow-band imaging magnifying colonoscopy. Gastrointest Endosc 2016;83:643-649. https://doi.org/10.1016/j.gie.2015.08.004
- Mori Y, Kudo SE, Misawa M, et al. Real-time use of artificial intelligence in identification of diminutive polyps during colonoscopy: a prospective study. Ann Intern Med 2018;169:357-366. https://doi.org/10.7326/M18-0249
Cited by
- Recent Development of Computer Vision Technology to Improve Capsule Endoscopy vol.52, pp.4, 2018, https://doi.org/10.5946/ce.2018.172
- Deep learning algorithms for automated detection of Crohn’s disease ulcers by video capsule endoscopy vol.91, pp.3, 2018, https://doi.org/10.1016/j.gie.2019.11.012
- Artificial Intelligence in Gastrointestinal Endoscopy vol.53, pp.2, 2018, https://doi.org/10.5946/ce.2020.038
- Robotics in the Gut vol.3, pp.4, 2018, https://doi.org/10.1002/adtp.201900125
- Editors' Choice of Noteworthy Clinical Endoscopy Publications in the First Decade vol.54, pp.5, 2018, https://doi.org/10.5946/ce.2021.216
- Applicability of colon capsule endoscopy as pan-endoscopy: From bowel preparation, transit, and rating times to completion rate and patient acceptance vol.9, pp.12, 2021, https://doi.org/10.1055/a-1578-1800