• Title/Summary/Keyword: array processing

Search Result 1,012, Processing Time 0.025 seconds

A VLSI Array Processor Architecture for High-Speed Processing of Full Search Block Matching Algorithm (완전탐색 블럭정합 알고리즘의 고속 처리를 위한 VLSI 어레이 프로세서의 구조)

  • 이수진;우종호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.4A
    • /
    • pp.364-370
    • /
    • 2002
  • In this paper, we propose a VLSI array architecture for high speed processing of FBMA. First of all, the sequential FBMA is transformed into a single assignment code by using the index space expansion, and then the dependance graph is obtained from it. The two dimensional VLSI array is derived by projecting the dependance graph along the optimal direction. Since the candidate blocks in the search range are overlapped with columns as well as rows, the processing elements of the VLSI array are designed to reuse the overlapped data. As the results, the number of data inputs is reduced so that the processing performance is improved. The proposed VLSI array has (N$^2$+1)${\times}$(2p+1) processing elements and (N+2p) input ports where N is the block size and p is the maximum search range. The computation time of the rat reference block is (N$^2$+2(p+1)N+6p), and the block pipeline period is (3N+4p-1).

DSP Implementation of Speech Enhancement System Using Microphone Array with Adaptive Post-processing (적응 후처리 과정을 갖는 마이크로폰 배열을 이용한 잡음제거기의 DSP 구현)

  • 권홍석;김시호;배건성
    • Proceedings of the IEEK Conference
    • /
    • 2002.06d
    • /
    • pp.413-416
    • /
    • 2002
  • In this paper, a speech enhancement system using microphone array with adaptive Post-Processing is implemented in real-lime with TMS320C6201 DSP. It consists of delay-and-sum beamformer and adaptive post-processing filters with NLMS (Normalized Least Mean Square) algorithm. THS1206 ADC is used for collection of 4-channel microphone signals. Sizes of program memory, data ROM and data RAM of the implemented system are 15,744, 748 and 47,540 bytes, respectively. Finally 21.839${\times}$106 clocks per second is required for real-time operation.

  • PDF

Analysis on Noise Correlation of Triplet Line Array Sensors in the East Sea (동해에서의 삼중 선 배열 센서들의 잡음 상관관계 분석)

  • Ryu, Youngwoo;Jeong, Euicheol;Chun, Seung-yong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.6
    • /
    • pp.479-486
    • /
    • 2015
  • A triplet line array has a capability for solving left/right ambiguity problem and high directivity of line array. For this, high computational powers and correlation between nearby sensors must be considered. Hardware powers are dramatically increased, so various adaptive beamforming techniques and signal processing techniques can be adopted for large triplet line array. To investigate the optimum signal processing method and improve the target detection capability, we need to analyze the noise correlation among the triplet line array sensors in real environment. In this paper we analyze the experimental data in the East Sea, investigate noise correlation between three hydrophones in triplet sensors, among the triplet sensors and time varying properties. Based on the acquired results, it is possible to verify some information for beamforming and signal processing methods with considering the properties of the triplet line array.

Systolic Arrays for Lattice-Reduction-Aided MIMO Detection

  • Wang, Ni-Chun;Biglieri, Ezio;Yao, Kung
    • Journal of Communications and Networks
    • /
    • v.13 no.5
    • /
    • pp.481-493
    • /
    • 2011
  • Multiple-input multiple-output (MIMO) technology provides high data rate and enhanced quality of service for wireless communications. Since the benefits from MIMO result in a heavy computational load in detectors, the design of low-complexity suboptimum receivers is currently an active area of research. Lattice-reduction-aided detection (LRAD) has been shown to be an effective low-complexity method with near-maximum-likelihood performance. In this paper, we advocate the use of systolic array architectures for MIMO receivers, and in particular we exhibit one of them based on LRAD. The "Lenstra-Lenstra-Lov$\acute{a}$sz (LLL) lattice reduction algorithm" and the ensuing linear detections or successive spatial-interference cancellations can be located in the same array, which is considerably hardware-efficient. Since the conventional form of the LLL algorithm is not immediately suitable for parallel processing, two modified LLL algorithms are considered here for the systolic array. LLL algorithm with full-size reduction-LLL is one of the versions more suitable for parallel processing. Another variant is the all-swap lattice-reduction (ASLR) algorithm for complex-valued lattices, which processes all lattice basis vectors simultaneously within one iteration. Our novel systolic array can operate both algorithms with different external logic controls. In order to simplify the systolic array design, we replace the Lov$\acute{a}$sz condition in the definition of LLL-reduced lattice with the looser Siegel condition. Simulation results show that for LR-aided linear detections, the bit-error-rate performance is still maintained with this relaxation. Comparisons between the two algorithms in terms of bit-error-rate performance, and average field-programmable gate array processing time in the systolic array are made, which shows that ASLR is a better choice for a systolic architecture, especially for systems with a large number of antennas.

Development of Optical Head Unit for Nano Optical Probe Array (나노 광 프로브 어레이 구현을 위한 광학 헤드 유닛 개발)

  • Kim H.;Lim J.;Kim S.;Han J.;Kang S.
    • Transactions of Materials Processing
    • /
    • v.15 no.1 s.82
    • /
    • pp.21-26
    • /
    • 2006
  • A optical head unit for nano optical probe array was developed. The optical probe array is generated by Talbot effect. The shape and thickness of microlens array(MLA) were designed to minimize the spot size at the foci of MLA. To increase the optical efficiency of the system and obtain the large tolerance for fabrication, aperture size was theoretically optimized. Then microlens illuminated aperture array(MLIAA) as an optical head unit was fabricated using a ultra violet(UV) molding process on aluminum aperture array. In this process, Al aperture array was fabricated separately using the photolithography and reactive ion etching(RIE) process. Optical properties of the generated optical probes were measured and compared at Talbot distance from the aperture array having a diameter of $1{\mu}m$ and MLIAA.

A Performance Evaluation of Fully Asynchronous Disk Array Using Simulation Method (시뮬레이션 기법을 이용한 완전 비동기 디스크 어레이 성능 평가)

  • 오유영
    • Journal of the Korea Society for Simulation
    • /
    • v.8 no.2
    • /
    • pp.29-43
    • /
    • 1999
  • As real-time processing of data with large storage space is required in the era of multimedia, disk arrays are generally used as storage subsystems which be able to provide improved I/O performance. To design the cost-effective disk array, it is important to develop performance models which evaluate the disk array performance. Both queueing theory and simulation are applicable as the method of performance evaluation through queueing modeling. But there is a limit to the analytical method using queueing theory due to the characteristics of disk array requests being serviced in the parallel and concurrent manner. So in this paper we evaluate the disk array performance using simulation method which abstract disk array systems in the low level. Performance results were evaluated through simulation, so that mean response time, mean queueing delay, mean service time, mean queue length for disk array requests and utilization, throughput for disk array systems, can be utilized for capacity planning in the phase of disk array design.

  • PDF

An Efficient Functional Analysis Method for Micro-array Data Using Gene Ontology

  • Hong, Dong-Wan;Lee, Jong-Keun;Park, Sung-Soo;Hong, Sang-Kyoon;Yoon, Jee-Hee
    • Journal of Information Processing Systems
    • /
    • v.3 no.1
    • /
    • pp.38-42
    • /
    • 2007
  • Microarray data includes tens of thousands of gene expressions simultaneously, so it can be effectively used in identifying the phenotypes of diseases. However, the retrieval of functional information from a large corpus of gene expression data is still a time-consuming task. In this paper, we propose an efficient method for identifying functional categories of differentially expressed genes from a micro-array experiment by using Gene Ontology (GO). Our method is as follows: (1) The expression data set is first filtered to include only genes with mean expression values that differ by at least 3-fold between the two groups. (2) The genes are then ranked based on the t-statistics. The 100 most highly ranked genes are selected as informative genes. (3) The t-value of each informative gene is imposed as a score on the associated GO terms. High-scoring GO terms are then listed with their associated genes and represent the functional category information of the micro-array experiment. A system called HMDA (Hallym Micro-array Data analysis) is implemented on publicly available micro-array data sets and validated. Our results were also compared with the original analysis.

Performance Analysis and Improvement of Array Shape Estimation for SONAR Systems (소나 시스템을 위한 어레이 형상 추정 기법의 성능 비교 및 개선)

  • 박희영;김인익;오원천;윤대희;이충용
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.12-16
    • /
    • 2001
  • To analyze the performance of array shape estimation techniques using auxiliary sensors, the appropriate number and the positions of auxiliary sensors are investigated. Also, a post-processing technique based on spline interpolation is proposed to improve the performance of array shape estimation. The simulation results showed that when auxiliary sensors are arranged uniformly, the performance of shape estimation is better than other arrangements of auxiliary sensors. Also, the proposed post-processing technique improved the performance of the existing shape estimation method, such as Kalman filter method.

  • PDF

Synthetic Aperture Processing in Beamspace Using Twin-line Array (이중 선 배열을 이용한 빔 영역 합성 처리)

  • 양인식;김기만;윤대희;오원천;도경철
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.82-86
    • /
    • 2001
  • In this Paper, we Propose synthetic aperture technique for twin-line may. Sin91e-line way is required long aperture size in order to achieve high SNR and angular resolution in shallow water Ultra low frequency signal from far-field has left-right ambiguity at sing1e-line array. To resolve these Problems, we'd like to adopt the synthetic aperture technique to twin-line array. The synthetic aperture method adopts coherent processing of sub-aperture signals at successive tine intervals in the beam domain. The proposed method shows low nile error and improved angular resolution. In simulation result, average sidelobe level is reduced about 7〔dB〕when the array Peformed 5-synthesis.

  • PDF

Power-Efficient DCNN Accelerator Mapping Convolutional Operation with 1-D PE Array (1-D PE 어레이로 컨볼루션 연산을 수행하는 저전력 DCNN 가속기)

  • Lee, Jeonghyeok;Han, Sangwook;Choi, Seungwon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.18 no.2
    • /
    • pp.17-26
    • /
    • 2022
  • In this paper, we propose a novel method of performing convolutional operations on a 2-D Processing Element(PE) array. The conventional method [1] of mapping the convolutional operation using the 2-D PE array lacks flexibility and provides low utilization of PEs. However, by mapping a convolutional operation from a 2-D PE array to a 1-D PE array, the proposed method can increase the number and utilization of active PEs. Consequently, the throughput of the proposed Deep Convolutional Neural Network(DCNN) accelerator can be increased significantly. Furthermore, the power consumption for the transmission of weights between PEs can be saved. Based on the simulation results, the performance of the proposed method provides approximately 4.55%, 13.7%, and 2.27% throughput gains for each of the convolutional layers of AlexNet, VGG16, and ResNet50 using the DCNN accelerator with a (weights size) x (output data size) 2-D PE array compared to the conventional method. Additionally the proposed method provides approximately 63.21%, 52.46%, and 39.23% power savings.