• 제목/요약/키워드: aromatic pollutants

검색결과 138건 처리시간 0.026초

남해 연안 해역에 있어서 미량유기오염물질의 정량적 평가 (Quantitative Assessment of Micropollutants in the Southern Coastal Waters of Korea)

  • 한상국;박지영;이종삼
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제8권4호
    • /
    • pp.213-219
    • /
    • 2005
  • 본 연구는 310종 다성분 동시분석 법을 활용하여 남해 연안 해역 중 광양만, 여자만, 가막만에서의 미량유기오염물질에 의한 오염특성을 규명하고자 하였다. 채수지점에서 검출된 주요 미량유기오염물질은 aliphatic, polycyclic compounds 와 같은 CH기의 화학물질과 aromatic ammines, nitro compounds와 같은 CHN(O)기의 화학적 구조를 갖는 물질이었다. 미량유기오염물질의 농도는 겨울철보다는 여름철에 높게 나타났으나 검출된 물질 종수와 계절적 상관성은 뚜렷하게 나타나지 않았다. 남해 연안 해역에서 검출된 농약의 총량은 $ND{\sim}9.11$ 이었으며 광양만과 가막만에서 살충제와 제초제의 검출이 집중적으로 관찰되었다. 또한 남해 연안 해역에서 환경호르몬성 물질은 총 6종이 검출되었다. 이러한 결과로부터 남해연안해역의 주요오염인자는 살충제와 제초제, 그리고 수종의 환경호르몬성 물질로 판단된다.

  • PDF

APPLICATION OF A PILOT-SCALE FLUIDIZED-BED REACTOR FOR THE DECONTAMINATION OF GROUNDWATER

  • ;이성택;;장용근
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2001년도 추계학술발표대회
    • /
    • pp.77-80
    • /
    • 2001
  • Groundwater, contaminated predominantly with aromatic compounds and chlorinated ethylene, could be biologically treated in a fluidized-bed reactor with immobilized cells. The decomposition efficiency for the aromatics was over 90% at the retention time of 2.5 h. The chlorinated ethylenes, especially trichloroethylene (TCE) and cis-dichloroethylene (DCE), could be decomposed only insufficiently. No anaerobic methane formation was observed for this groundwater even at a very low dissolved oxygen (DO) concentration of 0.75 mg/L. The variation of DO concentration resulted in an optimal value of 1.5 mg/L. The recycle of air waste could increase the utilization of oxygen. The amount of low boiling pollutants stripped out remained constant with the recycle, while for the higher boiling pollutants the stripping slightly increased. Using air instead of oxygen increases the flow rate of air waste, which is connected to a higher stripping of pollutants. In this investigation, the pollutant concentration in the air waste remained constant. The stripping of main pollutants did not exceed 0.3 %.

  • PDF

대기 중 다환방향족탄화수소-환경학적 고찰 (Atmospheric Polycyclic Aromatic H7ydrocarbons -Environmental Implications)

  • 백성옥
    • 한국대기환경학회지
    • /
    • 제15권5호
    • /
    • pp.525-544
    • /
    • 1999
  • Polycyclic aromatic hydrocarbons (PAH) were one of the first airborne pollutants to be identified as being carcinogenic. This class of compounds is ubiquitous in the urban atmosphere, and has therefore undergone considerable scrutiny for the last three decades. PAH can be formed in any incomplete combustion or high temperature pyrolytic process involving materials containing carbon and hydrogen, such as fossil fuels. In this paper, the literature on the occurrence, ambient levels, and atmospheric fate and behaviour of airbonrne PAH has been reviewed, with a particular emphasis on the role of automobile sources in PAH emissions. Sampling and analytical techniques for the determination of PAH in air have also been examined. In addition, health implications and legislative aspects of human exposure to airborne PAH have been briefly reviewed. Finally, future requirements for better understanding of the atmospheric behaviour of PAH recommended.

  • PDF

도시 대기오염물중 다환방향족 탄화수소의 배출원 규명을 위한 화학물질 수지모델의 적용 (Application of chemical Mass Balance Model for the Source Apportionment of Polynuclear Aromatic Hydrocarbons in Urban Atmosphere)

  • 구자공;서영화
    • 한국대기환경학회지
    • /
    • 제8권4호
    • /
    • pp.229-239
    • /
    • 1992
  • A receptor model application was performed by using a chemical mass balance (CMB) model to identify and apportion the specific source of airborne organic pollutants, particularly polynuclear aromatic hydrocarbons (PAHs). Source profiles of PAHs produced from the combustion of fossil fuels for CMB modeling were prepared by measuring them in emission gases. The emission sources which were examineed for the development of PAH source profiles are a coal-fired furnace using Yontan, a bunker-C iol heating boiler, and gasoline-and diesel engine automobiles. The ambient concentrations of PAHs were determined at four sites in Daejon city in 1991 with a seasonal variation. Wintertime air samples contained more extractable organic matter than summertime samples. The results of CMB modeling were various depending on the sampling sites and seasons, but the emission from bunker-C oil heating boliers was the predominant factor to affect local air quality throughout the year.

  • PDF

The Temporal and Spatial Distribution of Volatile Organic Compounds(VOCs) in the Urban Residential Atmosphere of Seoul, Korea

  • Anthwal, Ashish;Park, Chan-Goo;Jung, Kweon;Kim, Min-Young;Kim, Ki-Hyun
    • Asian Journal of Atmospheric Environment
    • /
    • 제4권1호
    • /
    • pp.42-54
    • /
    • 2010
  • Automobile emissions have caused a major hydrocarbon pollution problem in the ambient air of many cities around the world. This study was conducted to measure the pollution status of volatile organic compounds (VOCs) in some urban residential areas in Seoul, Korea. A total of 20 VOCs (11 aromatic and 9 chlorinated species) were identified at 4 urban residential sites in Seoul, Korea from February 2009 to July 2009. Comparison of total VOC (TVOC) concentration data indicated the dominance of the aromatic species with the maximum (72.2 ppbC) at Jong Ro (JR) and the minimum at Yang Jae (33.4 ppbC). The peak concentration of TVOC occurred during spring at all sites with an exception at Gang Seo (GS), where it was recorded during winter. The distribution of individual VOCs at the study sites was characterized by high toluene concentration. A strong correlation of benzene was also observed with other VOCs and criteria pollutants at all sites (except YJ). The overall results of this study suggest that vehicular emissions have greatly contributed to the increase in VOC pollution at all the study sites.

Verification of Heme Catalytic Cycle with 5-Aminosalicylic Acid and Its Application to Soil Remediation of Polycyclic Aromatic Hydrocarbons

  • Chung, Namhyun;Park, Kapsung;Stevens, David K.;Kang, Guyoung
    • Environmental Engineering Research
    • /
    • 제19권2호
    • /
    • pp.139-143
    • /
    • 2014
  • Catalytic degradation of pentachlorophenol in soil by heme and hydrogen peroxide has been hypothesized to occur through nonspecific catalytic reactions similar to those involving ligninase. The present study examines the evidence for a heme catalytic mechanism for the oxidation of organic compounds. In the presence of hydrogen peroxide, heme is converted to the ferryl heme radical (Hm-$Fe^{+4{\cdot}}$), which can oxidize organic compounds, such as 5-aminosalicylic acid (5-ASA). A second 5-ASA may later be oxidized by ferryl heme (Hm-$Fe^{+4}$), which reverts to the ferric heme state (Hm-$Fe^{+3}$) to complete the cycle. We believe that this catalytic cycle is involved in the degradation of hazardous pollutants, such as polycyclic aromatic hydrocarbons (PAHs). Remediation via heme catalytic reactions of PAHs in soil from a pole yard was evaluated, and about 96% of PAHs was found to disappear within 42 days after treatment with heme and hydrogen peroxide. In addition, benzo[a]pyrene and six other PAHs were undetectable among a total of 16 PAH compounds examined. Therefore, we propose heme catalysis as a novel technology for the remediation of hazardous compounds in contaminated soil.

Analytical Methods for Spatial Distribution of Hazardous Air Pollutants (HAPs)

  • Amagai, Takashi
    • 한국대기환경학회:학술대회논문집
    • /
    • 한국대기환경학회 2010년도 춘계학술대회 논문집
    • /
    • pp.41-44
    • /
    • 2010
  • Hazardous air pollutants such as benzo[a]pyrene (BaP), benzene, formaldehyde have been concerned about the adverse health effect of long-term exposure. Contour map is useful for finding high-concentration region, emission source, and distributions of HAPs in the ambient air. To make a contour map, we have developed simple analytical method for selected HAPs; polycyclic aromatic hydrocarbons such as BaP, benzene and its derivatives such as toluene and xylene, and aldehydes and ketones. We have applied these methods to investigate air pollution by HAPs in some cities in Japan. The results show that these methods reveal actual emission sources if the PRTR emission report was not submitted.

  • PDF

수동대기채취기를 이용한 잔류성유기오염물질의 농도산정 (Calculation Method for the Concentration of Persistent Organic Pollutants (POPs) Collected by Passive Air Samplers)

  • 최성득
    • 한국대기환경학회지
    • /
    • 제29권2호
    • /
    • pp.217-227
    • /
    • 2013
  • Passive air samplers (PAS) have been developed since the early 2000s and widely used for the atmospheric monitoring of persistent organic pollutants (POPs). PAS are useful especially for the investigation of source-receptor relationship of POPs because they provide higher spatial resolution data. In Korea, however, only a few research groups have conducted POPs monitoring using PAS. One of the reasons for the limited application of PAS might be due to a complicated calculation method for air concentration. In this study, therefore, we introduced the principle of polyurethane foam (PUF)-PAS, which has been most widely used in the world, and provided an example of the calculation of air concentration of polycyclic aromatic hydrocarbons (PAHs). As all data tables and equations for this calculation were provided, this method can be used for the conversion of the amount of POPs (ng) in a PUF disk to air concentration ($ng/m^3$).

2001년 11월 오염시기와 2002년 봄 황사시기 제주도 고산에서의 잔류성 유기오염물질 농도 변화 (Concentration Variations of Persistent Organic Pollutants in Gosan, Jeju during the Polluted Period in November 2001 and the Yellow Sand Period in Spring 2002)

  • 김영성;김진영;김연제;문길주;문광주;한진석;김상우;윤순창;권성안
    • 한국대기환경학회지
    • /
    • 제19권5호
    • /
    • pp.469-490
    • /
    • 2003
  • Atmospheric concentrations of persistent organic pollutants (POPs) were measured at Gosan, Jeju in November 2001 and spring 2002, each time for two weeks. Primary target pollutants were organochlorine pesticides, coplanar polychlorinated biphenyls (co- PCBs), and dioxin/furans listed in the Stockholm Convention adopted in May 2001. Polycyclic aromatic hydrocarbons (PAHs) were also measured in order to understand the overall characteristics of the POPs distribution as well as PM$_{2.5}$, a potent carrier of POPs. In the latter part of the measurement period of November 2001, almost every pollutant of combustion origin including dioxin/furans went high probably due to influence of emissions in the nearby area. The characteristics of atmospheric environment at Gosan in this period were rather close to urban areas far from those of a background area. A severe dust storm swept for three days at the end of the measurement period of spring 2002. However, changes in pollutant concentrations were relatively small except PM$_{10}$. Nevertheless, increases in particulate PAHs and OCDD (octachlorinated dibenzo-p-dioxins), mostly present in fine particles, were observed. Trends in organochlorine pesticide variations were mixed although possible volatilization of DDT residues from soil was inferred from the measurements of spring 2002.2.2.

자동차에서 배출되는 가스상 유해대기오염물질 (HAPs) 배출량 추정 (Estimation of Gaseous Hazardous Air Pollutants Emission from Vehicles)

  • 김정;장영기;최상진;김정수;서충열;손지환
    • 한국대기환경학회지
    • /
    • 제29권1호
    • /
    • pp.1-9
    • /
    • 2013
  • Hazardous Air Pollutants (HAPs) are difficult to measure, analyze and assess for risk because of low ambient concentrations and varieties. Types of HAPs are Volatile organic compounds (VOCs), Polycyclic aromatic hydrocarbon (PAHs) and Aldehydes. HAP emissions from vehicles are a contributor to serious adverse health effects in urban areas. In this study, hazardous air pollutant emissions from road transport vehicles by Non-methane volatile organic compounds (NMVOC) weight fraction and PAHs emission factors are estimated in 2008. The top-five-most hazardous air pollutant emissions were estimated to toluene 864.3 ton/yr, acrolein 690.6 ton/yr, acetaldehyde 554.5 ton/yr, formaldehyde 498.7 ton/yr, propionaldehyde 421.6 ton/yr in 2008. The results for a cancer and non-cancer risk assessment of HAPs emissions show that the major cancer driver is formaldehyde and the non-cancer driver is acrolein.