DOI QR코드

DOI QR Code

Calculation Method for the Concentration of Persistent Organic Pollutants (POPs) Collected by Passive Air Samplers

수동대기채취기를 이용한 잔류성유기오염물질의 농도산정

  • Choi, Sung-Deuk (School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST))
  • 최성득 (울산과학기술대학교 도시환경공학부)
  • Received : 2013.01.05
  • Accepted : 2013.03.06
  • Published : 2013.04.30

Abstract

Passive air samplers (PAS) have been developed since the early 2000s and widely used for the atmospheric monitoring of persistent organic pollutants (POPs). PAS are useful especially for the investigation of source-receptor relationship of POPs because they provide higher spatial resolution data. In Korea, however, only a few research groups have conducted POPs monitoring using PAS. One of the reasons for the limited application of PAS might be due to a complicated calculation method for air concentration. In this study, therefore, we introduced the principle of polyurethane foam (PUF)-PAS, which has been most widely used in the world, and provided an example of the calculation of air concentration of polycyclic aromatic hydrocarbons (PAHs). As all data tables and equations for this calculation were provided, this method can be used for the conversion of the amount of POPs (ng) in a PUF disk to air concentration ($ng/m^3$).

Keywords

References

  1. Baek, S.-Y., S.-D. Choi, and Y.-S. Chang (2007) Estimation of air concentrations of PCBs using passive air samplers (PAS) and a gas/particle partition model, J. Kor. Soc. Atmos. Environ., 23, 734-743. https://doi.org/10.5572/KOSAE.2007.23.6.734
  2. Bartkow, M.E., J.N. Huckins, and J.F. Muller (2004) Fieldbased evaluation of semipermeable membrane devices (SPMDs) as passive air samplers of polyaromatic hydrocarbons (PAHs), Atmos. Environ., 38, 5983-5990. https://doi.org/10.1016/j.atmosenv.2004.06.036
  3. Bohlin, P., K.C. Jones, and B. Strandberg (2010) Field evaluation of polyurethane foam passive air samplers to assess airborne PAHs in occupational environments, Environ. Sci. Technol., 44, 749-754. https://doi.org/10.1021/es902318g
  4. Choi, S.-D. and Y.-S. Chang (2005) Air monitoring of persistent organic pollutants using passive air samplers, J. Kor. Soc. Atmos. Environ., 21, 481-494.
  5. Choi, S.-D., S.-Y. Baek, and Y.-S. Chang (2008a) Atmospheric levels and distribution of dioxin-like polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) in the vicinity of an iron and steel making plant, Atmos. Environ., 42, 2479-2488. https://doi.org/10.1016/j.atmosenv.2007.12.032
  6. Choi, S.-D., S.-Y. Baek, Y.-S. Chang, F. Wania, M.G. Ikonomou, Y.-J. Yoon, B.-K. Park, and S. Hong (2008b) Passive air sampling of polychlorinated biphenyls and organochlorine pesticides at the Korean Arctic and Antarctic research stations: Implications for long-range transport and local pollution, Environ. Sci. Technol., 42, 7125-7131. https://doi.org/10.1021/es801004p
  7. Choi, S.-D., S.-Y. Baek, and Y.-S. Chang (2009a) Passive air sampling of persistent organic pollutants in Korea, Toxicol. Environ. Health Sci., 1, 75-82. https://doi.org/10.1007/BF03216467
  8. Choi, S.-D., C. Shunthirasingham, G.L. Daly, H. Xiao, Y.D. Lei, and F. Wania (2009b) Levels of polycyclic aromatic hydrocarbons in mountain air and soil are controlled by proximity to roads, Environ. Pollut., 157, 3199-3206. https://doi.org/10.1016/j.envpol.2009.05.032
  9. Choi, S.-D., H.-O. Kwon, Y.-S. Lee, E.-J. Park, and J.-Y. Oh (2012) Improving the spatial resolution of atmospheric polycyclic aromatic hydrocarbons using passive air samplers in a multi-industrial city, J. Hazard. Mater., 241-242, 252-258. https://doi.org/10.1016/j.jhazmat.2012.09.039
  10. Gouin, T., D. Wilkinson, S. Hummel, B. Meyer, and A. Culley (2010) Polycyclic aromatic hydrocarbons in air and snow from Fairbanks, Alaska, Atmos. Pollut. Res., 1, 9-15. https://doi.org/10.5094/APR.2010.002
  11. Harner, T., M. Shoeib, M. Diamond, G. Stern, and B. Rosenberg (2004) Using passive air samplers to assess urban-rural trends for persistent organic pollutants. 1. polychlorinated biphenyls and organochlorine pesticides, Environ. Sci. Technol., 38, 4474-4483. https://doi.org/10.1021/es040302r
  12. Harner, T., N.J. Farrar, M. Shoeib, K.C. Jones, and F.A.P.C. Gobas (2003) Characterization of polymer-coated glass as a passive air sampler for persistent organic pollutants, Environ. Sci. Technol., 37, 2486-2493. https://doi.org/10.1021/es0209215
  13. Huckins, J.N., G.K. Manuweera, J.D. Petty, D. Mackay, and J.A. Lebo (1993) Lipid-containing semipermeable membrane devices for monitoring organic contaminants in water, Environ. Sci. Technol., 27, 2489- 2496. https://doi.org/10.1021/es00048a028
  14. Huckins, J.N., M.W. Tubergen, and G.K. Manuweera (1990) Semipermeable membrane devices containing model lipid: A new approach to monitoring the bioavaiiability of lipophilic contaminants and estimating their bioconcentration potential, Chemosphere, 20, 533- 552. https://doi.org/10.1016/0045-6535(90)90110-F
  15. Lei, Y.D., R. Chankalal, A. Chan, and F. Wania (2002) Supercooled liquid vapor pressures of the polycyclic aromatic hydrocarbons, J. Chem. Eng. Data, 47, 801- 806. https://doi.org/10.1021/je0155148
  16. Lohmann, R., B.P. Corrigan, M. Howsam, K.C. Jones, and W.A. Ockenden (2001) Further developments in the use of semipermeable membrane devices (SPMDs) as passive air samplers for persistent organic pollutants: Field application in a spatial survey of PCDD /Fs and PAHs, Environ. Sci. Technol., 35, 2576- 2582. https://doi.org/10.1021/es0001862
  17. May, A.A., P. Ashman, J. Huang, S. Dhaniyala, and T.M. Holsen (2011) Evaluation of the polyurethane foam (PUF) disk passive air sampler: Computational modeling and experimental measurements, Atmos. Environ., 45, 4354-4359. https://doi.org/10.1016/j.atmosenv.2011.05.052
  18. Melymuk, L., M. Robson, P.A. Helm, and M.L. Diamond (2011) Evaluation of passive air sampler calibrations: Selection of sampling rates and implications for the measurement of persistent organic pollutants in air, Atmos. Environ., 45, 1867-1875. https://doi.org/10.1016/j.atmosenv.2011.01.011
  19. Odabasi, M., E. Cetin, and A. Sofuoglu (2006) Determination of octanol-air partition coefficients and supercooled liquid vapor pressures of PAHs as a function of temperature: Application to gas-particle partitioning in an urban atmosphere, Atmos. Environ., 40, 6615- 6625. https://doi.org/10.1016/j.atmosenv.2006.05.051
  20. Pozo, K., T. Harner, M. Shoeib, R. Urrutia, R. Barra, O. Parra, and S. Focardi (2004) Passive-sampler derived air concentrations of persistent organic pollutants on a North-South transect in Chile, Environ. Sci. Technol., 38, 6529-6537. https://doi.org/10.1021/es049065i
  21. Shoeib, M. and T. Harner (2002) Characterization and comparison of three passive air samplers for persistent organic pollutants, Environ. Sci. Technol., 36, 4142-4151. https://doi.org/10.1021/es020635t
  22. Tao, S., J. Cao, W. Wang, J. Zhao, Z. Wang, H. Cao, and B. Xing (2009) A passive sampler with improved per-formance for collecting gaseous and particulate phase polycyclic aromatic hydrocarbons in air, Environ. Sci. Technol., 43, 4124-4129. https://doi.org/10.1021/es900522v
  23. Tao, S., Y. Liu, W. Xu, C. Lang, S. Liu, H. Dou, and W. Liu (2007) Calibration of a passive sampler for both gaseous and particulate phase polycyclic aromatic hydrocarbons, Environ. Sci. Technol., 41, 568-573. https://doi.org/10.1021/es0617486
  24. UN (2004) Handbook for the 1979 convention on long-range transboundary air pollution and its protocols Geneva, Switzerland.
  25. UNEP (2013) Stockholm Convention Homepage (http://www.pops.int/).
  26. Wania, F., L. Shen, Y.D. Lei, C. Teixeira, and D.C.G. Muir (2003) Development and calibration of a resin-based passive sampling system for monitoring persistent organic pollutants in the atmosphere, Environ. Sci. Technol., 37, 1352-1359. https://doi.org/10.1021/es026166c
  27. Xiao, H. and F. Wania (2003) Is vapor pressure or the octanolair partition coefficient a better descriptor of the partitioning between gas phase and organic matter?, Atmos. Environ., 37, 2867-2878. https://doi.org/10.1016/S1352-2310(03)00213-9