• Title/Summary/Keyword: area overhead

Search Result 294, Processing Time 0.023 seconds

A Design of Digital DLL Circuits For High-Speed Memory (고속 메모리동작을 위한 디지털 DLL회로 설계)

  • Lee, Joong-Ho;Cho, Sang-Bock
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.7
    • /
    • pp.43-49
    • /
    • 2000
  • We proposed ADD(Alternate Directional Delay) circuit technique as the DLL(Delay Locked Loop) circuits which technique is established the data valid window(tDV) in DDR(Double Data Rate) Synchronous DRAM. This technique could be decrease area-overhead which it could generated bidirectional clock simultaneously using only one delay chain block. In this paper for high speed memory with relatively small size. This technique decreased area-overhead more 2 times than SMD(Synchronous Mirror Delay) technique. ADD technique has 50ps-140ps jitter and the operation frequency has 166MHz-66MHz range.(at 2.5V, TYP. condition)

  • PDF

A Kernel-Based Partitioning Algorithm for Low-Power, Low-Area Overhead Circuit Design Using Don't-Care Sets

  • Choi, Ick-Sung;Kim, Hyoung;Lim, Shin-Il;Hwang, Sun-Young;Lee, Bhum-Cheol;Kim, Bong-Tae
    • ETRI Journal
    • /
    • v.24 no.6
    • /
    • pp.473-476
    • /
    • 2002
  • This letter proposes an efficient kernel-based partitioning algorithm for reducing area and power dissipation in combinational circuit designs using don't-care sets. The proposed algorithm decreases power dissipation by partitioning a given circuit using a kernel extracted from the logic. The proposed algorithm also reduces the area overhead by minimizing duplicated gates in the partitioned sub-circuits. The partitioned subcircuits are further optimized utilizing observability don't-care sets. Experimental results for the MCNC benchmarks show that the proposed algorithm synthesizes circuits that on the average consume 22.5% less power and have 12.7% less area than circuits generated by previous algorithms based on a precomputation scheme.

  • PDF

A Study on the Indirect Benefits of Undergrounding Overhead Power Line Projects in an Urban Area Using Contingent Valuation Method (조건부가치측정법(CVM)을 이용한 도심지 송전선로 지중화사업의 간접편익 추정)

  • Park, Chan-Ho;Kim, Sung-Keun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6D
    • /
    • pp.871-879
    • /
    • 2008
  • Recently, as there are a rise in the standard of living and higher concerns of an electromagnetic wave and environment, undergrounding the aerial cables which are supported by large pylons and generally considered as the least attractive feature of an urban area is on an increasing trend to improve aesthetic benefits and electric reliability. This study applied Contingent Valuation Method (CVM) which is expected to become an effective tool to measure indirect benefit to estimate the substantial benefits of undergrounding overhead power line projects in an urban area. The tunneling construction project of the 345kV Shinsungnam electric power cable in Seongnam city was selected and a hypothetical scenario was given to respondents to determine their levels of Willingness to Pay (WTP) for undergrounding overhead power lines. The result from the estimation of the WTP of undergrounding overhead power lines in Seongnam city was calculated as approximately 17.1 billion won. Placing existing overhead lines underground is difficult to justify economically. Most undergrounding costs appear to be justified by aesthetic and public policy considerations. Therefore, considering the result of this study, undergrounding overhead power lines is of great benefit to public.

A Study on Speed-up of a Transition Section Between Overhead Catenary and Rigid Conductor System (강체 전차선로이행구간 고속화 방안 연구)

  • Lee, Kiwon;Choi, Tae-Su;Cho, Yong Hyeon;Park, Young;Jun, Hyo Chan;Choi, Kyu-Hyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.3
    • /
    • pp.467-473
    • /
    • 2018
  • R-Bar(Overhead Rigid Conductor system) is being developed for the high-speed in Europe because it has an advantage of cross section area reduction of tunnel compared with OCS (Overhead Catenary Line). Because there are lots of underground sections and mountains in korea, it is necessary to develop the R-Bar for a high-speed line. In this study, a method on speed-up of transition section between OCS and R-Bar is proposed. The commercial program, DAFUL, is used to predict a dynamic characteristics between Overhead Line and pantograph. The program is evaluated according to EN 50318 which is the European Norm for evaluation of the program. Using the evaluated modeling and method, a method for the max. speed of 250 km/h of transition section is proposed.

A Study on a Sensitivity Analysis of Design Parameters for the Speed-up of Overhead Rigid Conductor System (강체전차선로 고속화를 위한 설계파라미터 민감도 분석 연구)

  • Lee, Kiwon;Cho, Yong Hyeon;Kwon, Sam-Young;Park, Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.453-458
    • /
    • 2017
  • R-Bar (Overhead Rigid Conductor system) has been lately used for the speed of over 200km/h in Europe, while it has been developed and used for the max. speed of 120km/h in Korea. Because R-Bar has advantages of reduction of tunnel cross sectional area and maintenance, its development for more high-speed is urgent in Korea having many mountain area. Therefore a sensitivity analysis of design parameters for the speed-up of R-Bar has performed in this study. For the analysis, we have developed a program for the prediction of dynamic characteristics between a pantograph and R-Bar. The program was evaluated with the actual test result and a current collection performance according to the parameters such as a distance between brackets, a stiffness of bracket and of R-Bar rail was predicted with the program.

Assesment of the Decrement in Tensile Strength of an Overhead Transmission Line's Conductor in Korean Power System

  • Bae, In-Su;Kim, Dong-Min;Kim, Jin-O
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.9
    • /
    • pp.61-69
    • /
    • 2006
  • The tensile strength of an overhead transmission line's conductor in response to an aging is being assessed in this paper. It is our view that, the decrement in the conductor's tensile strength is a key index that can be used to determine a conductor's end of life and a current limits. This paper describes a probabilistic method of assessing this index for main transmission lines which are responsible for the north bound power flow in the Seoul metropolitan area. Such an assessment can be a useful guide for economic system operation.

Development of Deterioration Detecting System for Aged ACSR-OC Conductors in HV Overhead Distribution Lines (고압 가공배전선의 노화된 ACSR-OC 도체에 대한 열화검출시스템 설계)

  • Kim, Sung-Duck;Lee, Seung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2000.11a
    • /
    • pp.232-235
    • /
    • 2000
  • Design and experiments of a nondestructive system to inspect deterioration of ACSR-OC (ACSR Outdoor Cross-linked Polyethylene Insulated Wire usually used in HV overhead distribution lines presented in this paper. ACSR-OC conductor built to pollutants air for a long period would be easily progress to corrode so that it may lead to the reduction of the effective cross section area of conductors. A fault diagnosis system consisting of a solenoid sensor, a constant current source with RF frequency signal processing unit and a motor driver/controller designed and implemented. This instrument can dot the sensor output variation due to deterioration corrosion, continuously. As a result, it was shown such corrosion detector can readily be utilized estimating the diameter change due to deterioration overhead distribution lines and in giving an warning or inform before severe aged conductor lead to fail.

  • PDF

The Low-Area of New arc-tangent Look-up Table and A Low-Overhead for CATV Modem Systems

  • Ban, Young-Hoon;Park, Jong-Woo;Cho, Byung-Lok;Song, Jai-Chul
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.857-860
    • /
    • 1999
  • It is made possible a removal of the preamble for carrier recovery and symbol-timing recovery by storing a burst in memory with low overhead QPSK demodulation and this demodulation method also effects frame efficiency improved by processed synchronization performance. In this paper, we have proposed that new algorithm for arc-tangent look-up table which transform the input I, Q data by phase. This I, Q data plays an important role in demodulation and makes demodulator with low-overhead by storing a burst in memory. To evaluate proposed new algorithm and symbol-timing recovery method, function simulation and timing verification have been done by using synopsys VHDL tool.

  • PDF

A Study on the Swing Analysis and Application of Suspension Insulating Sets and Jumper wires for 154kV and 345kV Overhead Lines (345kV이하 송전선로용 현수애자련 및 점퍼선의 횡진해석 및 적용연구)

  • Sohn, H.K.;Lee, E.W.
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.116-118
    • /
    • 2001
  • It is important to determine of tower type whether suspension or tension tower in overhead transmission lines. When we select to tower type, we have need to check of swing angle for suspension string sets. And jumper wire of T/L in the strong wind area have to analysis of swing angle in order to clearance or length of tower arms. This paper is summarized the methods to calculate of swing angle for suspension string sets and jumper wires, and is calculated the swing angle. The calculated result have proposed to improved design specifications of overhead transmission line.

  • PDF

An Efficient Kernel-based Partitioning Algorithm for Low-power Low-Power Low-area Logic Circuit Design (저전력 저면적의 논리 회로 설계를 위한 효율적인 커널 기반 분할 알고리듬)

  • Hwang, Sun-Young;Kim, Hyoung;Choi, Ick-Sung;Jung, Ki-Jo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.8B
    • /
    • pp.1477-1486
    • /
    • 2000
  • This paper proposes an efficient kernel-based partitioning algorithm for reducing area and power dissipation in combinational circuit design.. The proposed algorithm decreases the power consumption by partitioning a given circuit utilizing a kernel, and reduces the area overhead by minimizing duplicated gates in the partitioned subcircuits. Experimental results for the MCNC benchmarks show that the proposed algorithm is effective by generating circuits consuming 43.6% less power with 30.7% less area on the average, when compared to the previous algorithm based on precomputation circuit structure.

  • PDF