• Title/Summary/Keyword: architectural beam

Search Result 561, Processing Time 0.027 seconds

Distribution of Welding Residual Stresses in Laser Welds with the Nail-head shape

  • Kim, Y.P.;Joo, S.M.;Bang, H.S.
    • International Journal of Korean Welding Society
    • /
    • v.3 no.1
    • /
    • pp.17-22
    • /
    • 2003
  • During the laser welding, weldments are suddenly heated and cooled by laser beam of high density energy. This phenomenon gives an occasion to complex welding residual stresses, which have a great influence on structural instability, in laser welds. However, relevant researches on this field are not sufficient until now and residual stress measurements have experimental and practical limitations. From these reasons, a numerical simulation may be attractive in order to solve the residual stress problem. For clarifying the distribution of heat and welding residual stresses in laser welds with the nail-head shape, authors conduct the finite element analysis (two-dimensional unstationary heat conduction & thermal elastic and plastic analysis). From the results, we can confirm the stress concentration occurs at the place of melting line shape changed in laser welds with the nail-head shape.

  • PDF

Analysis of the effect of aged concrete layer on RC beams, and a strengthening method employing carbon-fiber-reinforced polymer (CFRP) sheets.

  • Liana Satlykova;Young Sook Roh
    • Architectural research
    • /
    • v.26 no.2
    • /
    • pp.31-39
    • /
    • 2024
  • The numerical study focuses on the analysis of the structural behavior of concrete beams containing outdated concrete and offers an innovative method of strengthening them using carbon-fiber-reinforced polymer sheets (CFRP). The focus is on modeling and analyzing the performance of aged concrete beams strengthened by CFRP in the flexural direction. This study presents an ultimate load model for CFRP-strengthened RC beams featuring outdated concrete layers. Validation through four-point bending tests and finite element modeling demonstrated the efficacy of the model. Findings indicate that CFRP sheets significantly enhance beam strength, particularly in structures with outdated concrete layers, resulting in increased ultimate load capacity. Moreover, an inverse relationship between ultimate load and concrete layer height was observed, with the CFS-21-15-30 sample exhibiting the most substantial reduction. Validation of the model was achieved using finite element analysis con-ducted in Abaqus software.

Behavior of Steel Fiber-Reinforced Concrete Exterior Connections under Cyclic Loads (반복하중을 받는 강섬유 보강 철근콘크리트 외부 접합부의 거동 특성)

  • Kwon, Woo-Hyun;Kim, Woo-Suk;Kang, Thomas H.K.;Hong, Sung-Gul;Kwak, Yoon-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.6
    • /
    • pp.711-722
    • /
    • 2011
  • Beam-column gravity or Intermediate Moment frames subjected to unexpected large displacements are vulnerable when no seismic details are provided, which is typical. Conversely, economic efficiency of those frames is decreased if unnecessary special detailing is applied as the beam and column size becomes quite large and steel congestion is caused by joint transverse reinforcement in beam-column connections. Moderate seismic design is used in Korea for beam-column connections of buildings with structural walls, which are to be destroyed when the unexpected large earthquake occurs. Nonetheless, performance of such beamcolumn connections may be substantially improved by the addition of steel fibers. This study was conducted to investigate the effect of steel fibers in reinforced concrete exterior beam-column connections and possibility for the replacement of some joint transverse reinforcement. Ten half-scale beam-column connections with non-seismic details were tested under cyclic loads with two cycles at each drift up to 19 cycles. Main test parameters used were the volume ratio of steel fibers (0%, 1%, 1.5%) and joint transverse reinforcement amount. The test results show that maximum capacity, energy dissipation capacity, shear strength and bond condition are improved with the application of steel fibers to substitute transverse reinforcement of beam-column connections. Furthermore, several shear strength equations for exterior connections were examined, including the proposed equation for steel fiber-reinforced concrete exterior connections with non-seismic details.

Analysis about Flexural Strength of Steel Plate-Concrete Composite Beam using Folded Steel Plate (Cap) as Shear Connector (절곡 강판(Cap)을 전단연결재로 사용한 강판-콘크리트 합성보의 휨강도 분석)

  • Cho, Tae-Gu;Choi, Byong-Jeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.481-492
    • /
    • 2018
  • The steel-plate concrete composite beam is composed of a steel plate, concrete and shear connector to combine two inhomogeneous materials. In general, the steel plate is assembled by welding an existing composite beam. In this study, the SPC beam was composed of folding steel plates and concrete, without a headed stud. The folding steel plate was assembled by a high strength bolt instead of welding. To improve the workability in a field construction, a hat-shaped cap was attached to the junction with a slab. Monotonic load testing under two points was conducted under displacement control mode to analyze the flexural strength of the SPC beam using a cap as the shear connector. Five specimens with shear connector types, protrusion length, and different thickness of steel plates were constructed and tested. The experimental results were analyzed through the relationship between the shear strength ratio and flexural strength in KBC 2009. The test results showed a shear strength ratio of more than 40 %. In the case of using a cap-like specimen as the shear connector, the flexural strength was 70% of the value calculated as a fully composite beam. In addition, the cap showed a smaller shear strength than the stud, but the cap served as a shear connection. When the thickness of the steel plate was taken as a variable, the steel plate exhibited a bending strength of approximately 70% compared to a fully formed steel plate, and exhibited similar deformation performance. Local buckling occurred due to incomplete composite behavior, but local buckling occurred at a 5% higher strength for a relatively thick steel plate. The buckling width also decreased by 15%.

Cyclic Loading Test for Beam-to-Column Connections of Concrete Encased CFT Column (콘크리트피복충전 각형강관 기둥-보 접합부의 주기하중 실험)

  • Park, Hong Gun;Lee, Ho Jun;Park, Sung Soon;Kim, Sung Bae
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.1
    • /
    • pp.55-68
    • /
    • 2014
  • In this study, the beam-to column connections of concrete-encased-and-filled steel tube columns were tested under cyclic loading. Two specimens using steel beams and two specimens using precast concrete beams were tested. The dimension of the column cross section was $670mm{\pm}670mm$. The beam depths were 488mm and 588mm for the steel beams and 700mm for the precast concrete beams. The longitudinal bar ratios of the precast concrete beams were 1.1% and 1.5%. For the connections to the steel beams, continuity plates were used in the tube columns. For the connections to the PC beams, couplers were used for beam re-bar connections. The test results showed that except for a specimen, deformation capacities of the specimens were greater than 4% rotation angle, which is the requirement for the Special Moment Frame. Particularly, specimens using precast concrete beam showed excellent performances in the strength, deformation, and energy dissipation.

FRACTURE TOUGHNESS CHARACTERISTICS IN HIGH ENERGY DENSITY BEAM WELDED JOINT OF HIGH TENSILE STEELS

  • Ro, Chan-Seung;Yamada, Tomoaki;Mochizuki, Masahito;Ishikawa, Nobuyuki;Bang, Han-Sur;Toyoda, Masao
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.583-588
    • /
    • 2002
  • The purpose of the study is to evaluate fracture toughness on the Laser and the electron beam welded joints of high tensile steels (HT500, HT550, HT650) by using 3-point bend CTOD and Charpy impact test. WM (weld metal) CTOD tests have been carried out using two kinds of CTOD specimen, the Laser beam welding (108mm length, and 24mm width, and 12mm thickness) and the electron beam welding (l71mm length, and 38mm width, and 19mm thickness). WM Charpy impact specimen is a standard V-notch type, and the temperature of the experiment is changed from -45 to 20 degree of centigrade. FE-analysis is also performed in order to investigate the effect of stress-strain fields on fracture characteristics. Results of the standard V-notch Charpy test are influenced by strength mis-match effect and the absorbed energy vE depends on crack path, and The transition temperature of Laser beam welded joints is more higher than that of electron beam welded joints. Results of the 3-point bend test give low critical CTOD and the crack path is in the weld metal of al specimens. These results indicate fracture toughness characteristics of the welded joints and transition temperature of HT500 are similar both a Laser beam welded joint and an electron beam welded joint. But the fracture toughness and the transition temperature of the electron beam welded joints of HT550 and HT650 are higher than those o the Laser beam welded joints.

  • PDF

Dynamic experimental study on single and double beam-column joints in steel traditional-style buildings

  • Xue, Jianyang;Qi, Liangjie;Yang, Kun;Wu, Zhanjing
    • Structural Engineering and Mechanics
    • /
    • v.63 no.5
    • /
    • pp.617-628
    • /
    • 2017
  • In order to study the failure mode and seismic behavior of the interior-joint in steel traditional-style buildings, a single beam-column joint and a double beam-column joint were produced according to the relevant building criterion of ancient architectural buildings and the engineering instances, and the dynamic horizontal loading test was conducted by controlling the displacement of the column top and the peak acceleration of the actuator. The failure process of the specimens was observed, the bearing capacity, ductility, energy dissipation capacity, strength and stiffness degradation of the specimens were analyzed by the load-displacement hysteresis curve and backbone curve. The results show that the beam end plastic hinge area deformed obviously during the loading process, and tearing fracture of the base metal at top and bottom flange of beam occurred. The hysteresis curves of the specimens are both spindle-shaped and plump. The ultimate loads of the single beam-column joint and double beam-column joint are 48.65 kN and 70.60 kN respectively, and the equivalent viscous damping coefficients are more than 0.2 when destroyed, which shows the two specimens have great energy dissipation capacity. In addition, the stiffness, bearing capacity and energy dissipation capacity of the double beam-column joint are significantly better than that of the single beam-column joint. The ductility coefficients of the single beam-column joint and double beam-column joint are 1.81 and 1.92, respectively. The cracks grow fast when subjected to dynamic loading, and the strength and stiffness degradation is also degenerated quickly.

The Architectural Crafts as a Code of Manners and Their Historical Changes in Palatial Buildings and Royal Residences in the Late Joseon Dynasty (조선후기 궁실건축에 사용된 격식기법의 유형과 변천)

  • Ahn, So-Hyeon;Jeon, Bong-Hee
    • Journal of architectural history
    • /
    • v.28 no.6
    • /
    • pp.43-54
    • /
    • 2019
  • The grade of East Asian architecture is generally classified by the size, the shape of the roof, and the type of bracket set. The craftsmanship of columns, beam, purlin, stylobate, column base stone and paintwork is also a contributing factor for such classifications. These classifications can be found not only in historical documents such as 「Oksajo(屋舍條)」 of 『Samguksagi(三國史記)』 but also in 「house details regulations of residential architecture(家舍規制)」 of Joseon Dynasty. However, there are differences in detailed designs among the same grade of architecture regardless of the classification. In this research, the Palace, the Royal Residence(宮家), and the Jaesil(齋室) are considered as the Palatial Buildings and Royal Residences. And the advanced architectural o details which appear only in the Royal Architectures are defined as the 'The Architectural Crafts as a Code of Manners'. The Architectural Crafts as a Code of Manners is detailed design, which can be seen as fabrication of materials and supplementary factors. The Architectural Crafts as a Code of Manners used in the Palatial Buildings and Royal Residences reveal the types and their historical changes. This research will present a basis for the repair and restoration of cultural heritages to be carried out in the future, and also prevent them from further damages, thus help to preserve the cultural heritages.

A Case Study on the Using of Ryang, a Word of Wooden Structure in the Daehan Empire (대한제국기 목조가구 용어 량(樑)의 사용 사례 연구)

  • Lee, Yeon-Ro
    • Journal of architectural history
    • /
    • v.25 no.5
    • /
    • pp.41-50
    • /
    • 2016
  • This thesis mainly deals with how 'count of Ryang' was used in the Daehan Empire. Count of Ryang means how many purlins were used in the building with longitudinal section. As a result, the notion of Ryang in the Daehan Empire does not differ from now one. But the usages of that are different from the Joseon Dynasty, and from the present. In the Daehan Empire, count of Ryang mainly was appeared with another word, count of Kan. In the Joseon Dynasty, they used the count of Ryang combined with Kan. Count of Kan had the meaning of purlin-directional length. By doing that, count of Ryang indicates the size of flank, count of Kan indicates the length of front. But in the Daehan Empire, count of Kan, especially the beam-directional length was considered at first, and then count of Ryang. Separately they used another count of Kan meaning the area of building. By using the combined words, count of Kan and Ryang in the beam direction, they got focused on the frame of wooden structure than before.