DOI QR코드

DOI QR Code

Analysis of the effect of aged concrete layer on RC beams, and a strengthening method employing carbon-fiber-reinforced polymer (CFRP) sheets.

  • Liana Satlykova (Graduate School, Department of Architecture, Seoul National University of Science and Technology) ;
  • Young Sook Roh (Department of Architectural Engineering, Seoul National University of Science and Technology)
  • Received : 2024.03.25
  • Accepted : 2024.06.04
  • Published : 2024.06.30

Abstract

The numerical study focuses on the analysis of the structural behavior of concrete beams containing outdated concrete and offers an innovative method of strengthening them using carbon-fiber-reinforced polymer sheets (CFRP). The focus is on modeling and analyzing the performance of aged concrete beams strengthened by CFRP in the flexural direction. This study presents an ultimate load model for CFRP-strengthened RC beams featuring outdated concrete layers. Validation through four-point bending tests and finite element modeling demonstrated the efficacy of the model. Findings indicate that CFRP sheets significantly enhance beam strength, particularly in structures with outdated concrete layers, resulting in increased ultimate load capacity. Moreover, an inverse relationship between ultimate load and concrete layer height was observed, with the CFS-21-15-30 sample exhibiting the most substantial reduction. Validation of the model was achieved using finite element analysis con-ducted in Abaqus software.

Keywords

Acknowledgement

This study was carried out with the support of the National Research Foundation of Korea (№2020R1A2C100666212).

References

  1. Abbas, H., Ibrahim, S. M., Al-hazmi, N., Elsanadedy, H., Almusallam, T., & Al-salloum, Y. (2023). Axial Compression Behavior of Wall-like Reinforced Concrete Columns Retrofi tted Using Different FRP Schemes. 
  2. Al-Khafaji, A., & Salim, H. (2020). Flexural strengthening of RC continuous t-beams using CFRP. Fibers, 8(6), 1-18. https://doi.org/10.3390/fib8060041 
  3. Al-Saadi, N. T. K., Mohammed, A., Al-Mahaidi, R., & Sanjayan, J. (2019). A state-of-the-art review: Near-surface mounted FRP composites for reinforced concrete structures. Construction and Building Materials, 209, 748-769. https://doi.org/10.1016/j.conbuildmat.2019.03.121 
  4. Alam, M. S., Arifuzzaman, M., Islam, M. K., Al-Fuhaid, A. F., & Al-Mamun, A. (2022). Sustainable Solution for Deteriorated and Aged RCC Structures: A Review of Buildings, Bridges and Pavements. IOP Conference Series: Earth and Environmental Science, 1026(1), 0-8. https://doi.org/10.1088/1755-1315/1026/1/012009 
  5. Alshannag, M. J., & Higazey, M. (2022). Condition assessment and renovation of an aged precast reinforced concrete multi-storey building. IOP Conference Series: Earth and Environmental Science, 1026(1). https://doi.org/10.1088/1755-1315/1026/1/012016 
  6. Ashley, E. and Lemay L. (2008). Concrete's Contribution to Sustainable Development. Journal of Green Building 3, 37-49.  https://doi.org/10.3992/jgb.3.4.37
  7. Askar, M. K., Hassan, A. F., & Al-Kamaki, Y. S. S. (2022). Flexural and shear strengthening of reinforced concrete beams using FRP composites: A state of the art. Case Studies in Construction Materials, 17(May), e01189. https://doi.org/10.1016/j.cscm.2022.e01189 
  8. Awoyera, P., Adesina, A., Olalusi, O. B., & Viloria, A. (2020). Reinforced concrete deterioration caused by contaminated construction water: An overview. Engineering Failure Analysis, 116(March), 104715. https://doi.org/10.1016/j.engfailanal.2020.104715 
  9. Brown, R., Shukla, A., & Natarajan, K. R. (2002). Fiber Reinforcement of Concrete Structures. Uritc Project, 536101, 1-51. 
  10. Dassault Systemes Simulia Corp. (2012). Abaqus Analysis User's Manual Volume II: Analysis. Version 6.12, 2, 831. 
  11. de Medeiros-Junior, R. A., de Lima, M. G., & de Medeiros, M. H. F. (2015). Service life of concrete structures considering the effects of temperature and relative humidity on chloride transport. Environment, Development and Sustainability, 17(5), 1103-1119. https://doi.org/10.1007/s10668-014-9592-z 
  12. Dias, S. J. E., Barros, J. A. O., & Janwaen, W. (2018). Behavior of RC beams flexurally strengthened with NSM CFRP laminates. Composite Structures, 201(March), 363-376. https://doi.org/10.1016/j.compstruct.2018.05.126 
  13. Esfahani, M. R., Kianoush, M. R., & Tajari, A. R. (2007). Flexural behaviour of reinforced concrete beams strengthened by CFRP sheets. Engineering Structures, 29(10), 2428-2444. https://doi.org/10.1016/j.engstruct.2006.12.008 
  14. Hollaway, L. C. (2010). A review of the present and future utilisation of FRP composites in the civil infrastructure with reference to their important in-service properties. Construction and Building Materials, 24(12), 2419-2445. https://doi.org/10.1016/j.conbuildmat.2010.04.062 
  15. Ismail, M., Muhammad, B., & Ismail, M. E. G. (2010). Compressive strength loss and reinforcement degradations of reinforced concrete structure due to long-term exposure. Construction and Building Materials, 24(6), 898-902. https://doi.org/10.1016/j.conbuildmat.2009.12.003 
  16. Kotynia, R. (2020). Flexural behaviour of reinforced concrete beams strengthened with near surface mounted CFRP strips. Composites in Civil Engineering, CICE 2006, 619-622. 
  17. Liu, C., Gao, J., Chen, F., Zhao, Y., Chen, X., & He, Z. (2019). Coupled effect of relative humidity and temperature on the degradation of cement mortars partially exposed to sulfate attack. Construction and Building Materials, 216, 93-100. https://doi.org/10.1016/j.conbuildmat.2019.05.001 
  18. Mahmoud, A. M., Ammar, H. H., Mukdadi, O. M., Ray, I., Imani, F. S., Chen, A., & Davalos, J. F. (2010). Non-destructive ultrasonic evaluation of CFRPconcrete specimens subjected to accelerated aging conditions. NDT and E International, 43(7), 635-641. https://doi.org/10.1016/j.ndteint.2010.06.008 
  19. Martin, T., Taylor, S., Robinson, D., & Cleland, D. (2019). Finite element modelling of FRP strengthened restrained concrete slabs. Engineering Structures, 187(February), 101-119. https://doi.org/10.1016/j.engstruct.2019.02.035 
  20. Mostofinejad, D., & Mahmoudabadi, E. (2010). Grooving as Alternative Method of Surface Preparation to Postpone Debonding of FRP Laminates in Concrete Beams. Journal of Composites for Construction, 14(6), 804-811. https://doi.org/10.1061/(asce)cc.1943-5614.0000117 
  21. Motavalli, M., of, C. C.-I. C., & 2007, undefined. (2010). FRP composites for retrofitting of existing civil structures in Europe: State-of-the-art review. Researchgate.Net, 14(4), 451-463. 
  22. Mukhtar, F. M., & Arowojolu, O. (2020). Recent developments in experimental and computational studies of hygrothermal effects on the bond between FRP and concrete. Journal of Reinforced Plastics and Composites, 39(11-12), 422-442. https://doi.org/10.1177/0731684420912332 
  23. Obaidat, Y. T., Heyden, S., & Dahlblom, O. (2010). The effect of CFRP and CFRP/concrete interface models when modelling retrofitted RC beams with FEM. Composite Structures, 92(6), 1391-1398. https://doi.org/10.1016/j.compstruct.2009.11.008 
  24. Ortiz, J., Aguado, A., Agullo, L., & Garcia, T. (2005). Influence of environmental temperatures on the concrete compressive strength: Simulation of hot and cold weather conditions. Cement and Concrete Research, 35(10), 1970-1979. https://doi.org/10.1016/j.cemconres.2005.01.004 
  25. Palacios-Munoz, B., Lopez-Mesa, B., & Gracia-Villa, L. (2019). Influence of refurbishment and service life of reinforced concrete buildings structures on the estimation of environmental impact. International Journal of Life Cycle Assessment, 24(11), 1913-1924. https://doi.org/10.1007/s11367-019-01622-w 
  26. Preinstorfer, P., Huber, T., Reichenbach, S., Lees, J. M., & Kromoser, B. (2022). Parametric Design Studies of Mass-Related Global Warming Potential and Construction Costs of FRP-Reinforced Concrete Infrastructure. Polymers, 14(12). https://doi.org/10.3390/polym14122383 
  27. Raoof, S. M., & Bournas, D. A. (2017). Bond between TRM versus FRP composites and concrete at high temperatures. Composites Part B: Engineering, 127, 150-165. https://doi.org/10.1016/j.compositesb.2017.05.064 
  28. Raza, S., Khan, M. K. I., Menegon, S. J., Tsang, H. H., & Wilson, J. L. (2019). Strengthening and repair of reinforced concrete columns by jacketing: State-of-the-art review. Sustainability (Switzerland), 11(11). https://doi.org/10.3390/su11113208 
  29. Toutanji, H., Zhao, L., & Zhang, Y. (2006). Flexural behavior of reinforced concrete beams externally strengthened with CFRP sheets bonded with an inorganic matrix. Engineering Structures, 28(4), 557-566. https://doi.org/10.1016/j.engstruct.2005.09.011 
  30. Vandoros, K. G., & Dritsos, S. E. (2008). Concrete jacket construction detail effectiveness when strengthening RC columns. Construction and Building Materials, 22(3), 264-276. https://doi.org/10.1016/j.conbuildmat.2006.08.019 
  31. Wahalathantri, B. L., Thambiratnam, D. P., Chan, T. H. T., & Fawzia, S. (2011). A material model for flexural crack simulation in reinforced concrete elements using ABAQUS. First International Conference on Engineering, Design and Developing the Built ENvironment for Sustainable Wellbeing, April, 260-264. 
  32. Xu, X. L., Lu, Z. D., Li, L. Z., & Jiang, C. J. (2017). Numerical Study on the Local Buckling Behaviour of Bolted Steel Plates in Steel Jacketing. Advances in Materials Science and Engineering, 2017. https://doi.org/10.1155/2017/1352084 
  33. Xue, W., Tan, Y., & Zeng, L. (2010). Flexural response predictions of reinforced concrete beams strengthened with prestressed CFRP plates. Composite Structures, 92(3), 612-622. https://doi.org/10.1016/j.compstruct.2009.09.036 
  34. Zhao, H., Hu, Y., Tang, Z., Wang, K., Li, Y., & Li, W. (2022). Deterioration of concrete under coupled aggressive actions associated with load, temperature and chemical attacks: A comprehensive review. Construction and Building Materials, 322(December 2021), 126466. https://doi.org/10.1016/j.conbuildmat.2022.126466