• Title/Summary/Keyword: architectural RNA

Search Result 13, Processing Time 0.021 seconds

Nuclear Bodies Built on Architectural Long Noncoding RNAs: Unifying Principles of Their Construction and Function

  • Chujo, Takeshi;Hirose, Tetsuro
    • Molecules and Cells
    • /
    • v.40 no.12
    • /
    • pp.889-896
    • /
    • 2017
  • Nuclear bodies are subnuclear, spheroidal, and membraneless compartments that concentrate specific proteins and/or RNAs. They serve as sites of biogenesis, storage, and sequestration of specific RNAs, proteins, or ribonucleoprotein complexes. Recent studies reveal that a subset of nuclear bodies in various eukaryotic organisms is constructed using architectural long noncoding RNAs (arcRNAs). Here, we describe the unifying mechanistic principles of the construction and function of these bodies, especially focusing on liquid-liquid phase separation induced by architectural molecules that form multiple weakly adhesive interactions. We also discuss three possible advantages of using arcRNAs rather than architectural proteins to build the bodies: position-specificity, rapidity, and economy in sequestering nucleic acid-binding proteins. Moreover, we introduce two recently devised methods to discover novel arcRNA-constructed bodies; one that focuses on the RNase-sensitivity of these bodies, and another that focuses on "semi-extractability" of arcRNAs.

Analysis of Bacterial Community Composition in Wastewater Treatment Bioreactors Using 16S rRNA Gene-Based Pyrosequencing (16S rRNA 유전자 기반의 Pyrosequencing을 이용한 하수처리시설 생물반응기의 세균군집구조 분석)

  • Kim, Taek-Seung;Kim, Han-Shin;Kwon, Soon-Dong;Park, Hee-Deung
    • Korean Journal of Microbiology
    • /
    • v.46 no.4
    • /
    • pp.352-358
    • /
    • 2010
  • Bacterial community composition in activated sludge wastewater treatment bioreactors were analyzed using 16S rRNA gene-based pyrosequencing for the four different wastewater treatment processes. Sequences within the orders Rhodocyclales, Burkholderiales, Sphingobacteriales, Myxococcales, Xanthomonadales, Acidobacteria group 4, Anaerolineales, Methylococcales, Nitrospirales, and Planctomycetales constituted 54-68% of total sequences retrieved in the activated sludge samples, which demonstrated that a few taxa constituted majority of the activated sludge bacterial community. The relative ratio of the order members was different for each treatment process, which was assumed to be affected by different operational and environmental conditions of each treatment process. In addition, activated sludge had very diverse bacterial species (Chao1 richness estimate: 1,374-2,902 operational taxonomic units), and the diversity was mainly originated from rare species. Particularly, the bacterial diversity was higher in membrane bioreactor than conventional treatment processes, and the long solids retention time of the operational strategy of the membrane bioreactor appeared to be appropriate for sustaining diverse slow growing bacteria. This study investigating bacterial communities in different activated sludge processes using a high-throughput pyrosequencing technology would be helpful for understanding microbial ecology in activated sludge and for improving wastewater treatment in the future.

Analysis of Archaeal Communities in Full-Scale Anaerobic Digesters Using 454 Pyrosequencing (454 Pyrosequencing을 이용한 실규모 혐기성 소화조의 아케아 군집구조 분석)

  • Kang, Hyun-Jin;Kim, Taek-Seung;Lee, Young-Haeng;Lee, Taek-June;Han, Keum-Suk;Choi, Young-Jun;Park, Hee-Deung
    • Korean Journal of Microbiology
    • /
    • v.47 no.3
    • /
    • pp.209-217
    • /
    • 2011
  • Archaeal communities were investigated using 454 pyrosequencing technology based on 16S rRNA gene in 11 samples collected from six different full-scale anaerobic digesters. Observed operational taxonomic units (OTUs) estimated from the archaeal 16S rRNA gene sequences were 13-55 OTUs (3% cutoff) which was corresponded to 29-89% of Chao1 richness estimates. In the anaerobic digesters there were archaeal sequences within the orders Thermoproteales, Thermoplasmatales, Desulfurococcales as well as within the orders Methanomicrobiales, Methanobacteriales, Methanococcales, Methanosarcinales, and Methanocellales, which are known to produce methane. Among these orders, Methanococcales known to produce methane using hydrogen was the predominant taxon and constituted 51.8-99.7% of total sequences. All samples showed a very similar community structure (Pearson correlation coefficient=0.99) except for one sample based on a heat map analysis. In addition, canonical correspondence analysis correlating archaeal communities to the environmental variables demonstrated that digester temperature and total solids removal rate were the two important explanatory variables. Overall results suggested that environmental and operational variables of anaerobic digester are important factors determining archaeal diversity and community structure.

A Study of Natural Frequency in Steel Wind Turbine Tower according to the RNA Model (강재 풍력 터빈 타워의 상부구조 모델링 방법에 따른 고유진동수 특성에 대한 고찰)

  • Lee, Yun-Woo;Choi, Jun-Ho;Kang, Sung-Yong;Kang, Young-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.5 no.3
    • /
    • pp.37-42
    • /
    • 2014
  • Wind turbine tower has a very important role in wind turbine system as one of the renewable energy that has been attracting attention worldwide recently. Due to the growth of wind power market, advance and development of offshore wind system and getting huger capacity is inevitable. As a result, the vibration is generated at wind turbine tower by receiving constantly dynamic loads such as wind load and wave load. Among these dynamic loads, the mechanical load caused by the rotation of the blade is able to make relatively periodic load to the wind turbine tower. So natural frequency of the wind turbine tower should be designed to avoid the rotation frequency of the rotor according to the design criteria to avoid resonance. Currently research of the wind turbine tower, the precise research does not be carried out because of simplifying the structure of the other upper and lower. In this study, the effect of blade modeling differences are to be analyzed in natural frequency of wind turbine tower.

Nitrifying Bacterial Community Structure of a Full-Scale Integrated Fixed-Film Activated Sludge Process as Investigated by Pyrosequencing

  • Kim, Taek-Seung;Kim, Han-Shin;Kwon, Soon-Dong;Park, Hee-Deung
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.3
    • /
    • pp.293-298
    • /
    • 2011
  • Nitrifying bacterial community structures of suspended and attached biomasses in a full-scale integrated fixed-film activated sludge process were investigated by analyzing 16S rRNA gene sequences obtained from pyrosequencing. The suspended biomass had a higher number of ammonia-oxidizing bacterial sequences (0.8% of total sequences) than the attached biomass (0.07%), although most of the sequences were within the Nitrosomonas oligotropha lineage in both biomasses. Nitrospira-like nitrite-oxidizing bacterial sequences were retrieved in the suspended biomass (0.06%), not in the attached biomass, whereas the existence of Nitrobacter-like sequences was not evident. The suspended biomass had higher nitrification activity (1.13 mg N/TSS/h) than the attached biomass (0.07 mg N/TSS/h). Overall, the results made it possible to conclude the importance of the suspended biomass, rather than the attached biomass, in nitrification in the wastewater treatment process studied.

Calcite-Forming Bacteria for Compressive Strength Improvement in Mortar

  • Park, Sung-Jin;Park, Yu-Mi;Chun, Woo-Young;Kim, Wha-Jung;Ghim, Sa-Youl
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.4
    • /
    • pp.782-788
    • /
    • 2010
  • Microbiological calcium carbonate precipitation (MCP) has been investigated for its ability to improve the compressive strength of mortar. However, very few studies have been conducted on the use of calcite-forming bacteria (CFB) to improve compressive strength. In this study, we discovered new bacterial genera that are capable of improving the compressive strength of mortar. We isolated 4 CFB from 7 environmental concrete structures. Using sequence analysis of the 16S rRNA genes, the CFB could be partially identified as Sporosarcina soli KNUC401, Bacillus massiliensis KNUC402, Arthrobacter crystallopoietes KNUC403, and Lysinibacillus fusiformis KNUC404. Crystal aggregates were apparent in the bacterial colonies grown on an agar medium. Stereomicroscopy, scanning electron microscopy, and X-ray diffraction analyses illustrated both the crystal growth and the crystalline structure of the $CaCO_3$ crystals. We used the isolates to improve the compressive strength of cement-sand mortar cubes and found that KNUC403 offered the best improvement in compressive strength.

Application of Alkaliphilic Biofilm-Forming Bacteria to Improve Compressive Strength of Cement-Sand Mortar

  • Park, Sung-Jin;Chun, Woo-Young;Kim, Wha-Jung;Ghim, Sa-Youl
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.3
    • /
    • pp.385-389
    • /
    • 2012
  • The application of microorganisms in the field of construction material is rapidly increasing worldwide; however, almost all studies that were investigated were bacterial sources with mineral-producing activity and not with organic substances. The difference in the efficiency of using bacteria as an organic agent is that it could improve the durability of cement material. This study aimed to assess the use of biofilm-forming microorganisms as binding agents to increase the compressive strength of cement-sand material. We isolated 13 alkaliphilic biofilmforming bacteria (ABB) from a cement tetrapod block in the West Sea, Korea. Using 16S RNA sequence analysis, the ABB were partially identified as Bacillus algicola KNUC501 and Exiguobacterium marinum KNUC513. KNUC513 was selected for further study following analysis of pH and biofilm formation. Cement-sand mortar cubes containing KNUC513 exhibited greater compressive strength than mineral-forming bacteria (Sporosarcina pasteurii and Arthrobacter crystallopoietes KNUC403). To determine the biofilm effect, Dnase I was used to suppress the biofilm formation of KNUC513. Field emission scanning electron microscopy image revealed the direct involvement of organic-inorganic substance in cement-sand mortar.

Insulin-like Growth Factor-I Induces Plectin and MACF1 Expression in C2C12 Myotubes (C2C12 myotube에서 insulin-like growth factor-I이 plectin과 MACF1 발현에 미치는 영향)

  • Kim, Hye Jin;Hwang, Ji Sun;Kwak, Yi-Sub;Lee, Won Jun
    • Journal of Life Science
    • /
    • v.22 no.12
    • /
    • pp.1651-1657
    • /
    • 2012
  • Plectin and microtubule actin cross-linking factor 1 (MACF1) are architectural proteins that contribute to the function of skeletal muscle as generators of mechanical force. However, the influence of insulin- like growth factor-I (IGF-I), a master regulator of skeletal muscle cells, on plectin and MACF1 in skeletal muscle cells has not been demonstrated. The effect of IGF-I on plectin and MACF1 gene expression was investigated by treating differentiated C2C12 murine skeletal muscle cells with 20 ng/ml of IGF-I at different time points. The IGF-I treatment increased plectin protein expression in a dose-dependent manner. The mRNA level of plectin was measured by real-time quantitative PCR to determine if plectin induction was regulated pretranslationally. IGF-I treatment resulted in a very rapid induction of plectin mRNA transcript in C2C12 myotubes. Plectin mRNA increased by 140 and 180% after 24 and 48 hours of IGF-I treatment, respectively, and returned to the control level after 72 hours of IGF-I treatment. MACF1 mRNA increased 86 and 90% after 24 and 48 hours of IGF-I treat-ment, respectively, and returned to the control level after 72 hours of IGF-I treatment. These results suggested that the plectin gene is regulated pretranslationally by IGF-I in skeletal muscle cells. In conclusion, IGF-I induces a rapid transcriptional modification of the plectin and MACF1 genes in C2C12 skeletal muscle cells and has modulating effects on a cytolinker protein as well as on contractile proteins.

Quantitative Analysis of Human- and Cow-Specific 16S rRNA Gene Markers for Assessment of Fecal Pollution in River Waters by Real-Time PCR

  • Jeong, Ju-Yong;Park, Hee-Deung;Lee, Kyong-Hee;Hwang, Jae-Hong;Ka, Jong-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.2
    • /
    • pp.245-253
    • /
    • 2010
  • The base sequences representing human- and cow-specific 168 rRNA gene markers identified in a T-RFLP analysis were recovered from clone libraries. The human- and cow-specific primers were designed from these sequences and their specificities were analyzed with fecal DNAs from human, cow, and pig. The AllBac primer set showed positive results for all human, cow, and pig samples, whereas the human-specific primer set showed positive result only for the human sample but not for the cow or pig samples. Likewise, the cow-specific primer set showed positive results only for the cow sample but not for the human or pig samples. Real-time PCR assay with these primers was developed for the identification and quantification of fecal pollution in the river water. The human- and cow-specific markers were detected in the order of 9 $\log_{10}$ copies per gram wet feces, which were two orders of magnitude lower than those of total Bacteroidales. For the river water samples, the human-specific marker was detected in $1.7-6.2\;\log_{10}$ copies/100 ml water, which was 2.4-4.9 orders of magnitude lower than those of total Bacteroidales. There was no significant correlation between total Bacteroidales and conventional fecal indicators, but there was a high correlation between Bacteroidales and the human-specific marker. This assay could reliably identify and quantify the fecal pollution sources, enabling effective measures in the watersheds and facilitating water quality management.

An FCA-mediated epigenetic route towards thermal adaptation of autotrophic development in plants

  • Lee, Hyo-Jun;Ha, Jun-Ho;Park, Chung-Mo
    • BMB Reports
    • /
    • v.50 no.7
    • /
    • pp.343-344
    • /
    • 2017
  • Plants are able to recognize even small changes in surrounding temperatures to optimize their growth and development. At warm temperatures, plants exhibit diverse architectural adjustments, including hypocotyl and petiole elongation, leaf hyponasty, and reduced stomatal density. However, it was previously unknown how such warm temperatures affected the early stages of seedling development. In our recent study, we demonstrated that the RNA-binding protein, FCA, is critical for sustaining chlorophyll biosynthesis during early seedling development, which is a prerequisite for autotrophic transition at warm temperatures. FCA plays a dual role in this thermal response. It inhibits the rapid degradation of protochlorophyllide oxidoreductases (PORs) that mediate chlorophyll biosynthesis. In addition, it induces the expression of POR genes at the chromatin level, which contributes to maintaining functional enzyme levels. Our findings provide molecular basis for the thermal adaptation of chlorophyll biosynthesis during the early stages of seedling development in nature.