Browse > Article
http://dx.doi.org/10.4014/jmb.0911.11015

Calcite-Forming Bacteria for Compressive Strength Improvement in Mortar  

Park, Sung-Jin (School of Life Sciences, Kyungpook National University)
Park, Yu-Mi (School of Life Sciences, Kyungpook National University)
Chun, Woo-Young (School of Architecture and Architectural Engineering, Kyungpook National University)
Kim, Wha-Jung (School of Architecture and Architectural Engineering, Kyungpook National University)
Ghim, Sa-Youl (School of Life Sciences, Kyungpook National University)
Publication Information
Journal of Microbiology and Biotechnology / v.20, no.4, 2010 , pp. 782-788 More about this Journal
Abstract
Microbiological calcium carbonate precipitation (MCP) has been investigated for its ability to improve the compressive strength of mortar. However, very few studies have been conducted on the use of calcite-forming bacteria (CFB) to improve compressive strength. In this study, we discovered new bacterial genera that are capable of improving the compressive strength of mortar. We isolated 4 CFB from 7 environmental concrete structures. Using sequence analysis of the 16S rRNA genes, the CFB could be partially identified as Sporosarcina soli KNUC401, Bacillus massiliensis KNUC402, Arthrobacter crystallopoietes KNUC403, and Lysinibacillus fusiformis KNUC404. Crystal aggregates were apparent in the bacterial colonies grown on an agar medium. Stereomicroscopy, scanning electron microscopy, and X-ray diffraction analyses illustrated both the crystal growth and the crystalline structure of the $CaCO_3$ crystals. We used the isolates to improve the compressive strength of cement-sand mortar cubes and found that KNUC403 offered the best improvement in compressive strength.
Keywords
Arthrobacter crystallopoietes; calcite precipitation; biomineralization; concrete mortar; compressive strength;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Hammes, F., N. Boon, J. de Villiers, W. Verstraete, and S. D. Siciliano. 2003. Strain-specific ureolytic microbial calcium carbonate precipitation. Appl. Environ. Microbiol. 69: 4901-4909.   DOI   ScienceOn
2 Kawaguchi, H. and A. W. Decho. 2002. A laboratory investigation of cyanobacterial extracellular polymeric secretions (EPS) in influencing $CaCO_3$ polymorphism. J. Cryst. Growth 240: 230-235.   DOI   ScienceOn
3 Knorre, H. and W. Krumbein. 2000. Bacterial calcification, pp. 25-31. In R. E. Riding and S. M Awramik (eds.). Microbial Sediments. Springer-Verlag, Berlin, Germany.
4 Marentette, J. M., J. E. Norwig, M. E. Stockelmann, and G. W. Wolfgang. 1997. Crystallization of $CaCO_3$ in the presence of PEO-block-PMAA copolymers. Adv. Mater. 9: 647-651.   DOI   ScienceOn
5 Ivan, S. and S. S. Branka. 2005. Influence of the primary structure of enzymes on the formation of $CaCO_3$ polymorphs: A comparison of plant (Canavalia ensiformis) and bacterial (Bacillus pasteurii) ureases. Langmuir 21: 8876-8882.   DOI   ScienceOn
6 Jhung, S. H., J. H. Lee, and J. S. Chang. 2008. Crystal size control of transition metal ion-incorporated aluminophosphate molecular sieves: Effect of ramping rate in the syntheses. Micropor. Mesopor. Mater. 112: 178-186.   DOI   ScienceOn
7 Jonkheijm, P., P. van der Schoot, A.P.H.J. Schenning, and E. W. Meijer. 2006. Probing the solvent-assisted nucleation pathway in chemical self-assembly. Science 313: 80-83.   DOI   ScienceOn
8 Edmund, B. 2003. Biomineralization of unicellular organisms: An unusual membrane biochemistry for the production of inorganic nano- and microstructures. Angew. Chem. Int. Ed. 42: 614-641.   DOI   ScienceOn
9 De Muynck, W., D. Debrouwer, N. De Belie, and W. Verstraete. 2008. Bacterial carbonate precipitation improves the durability of cementitious materials. Cem. Concr. Res. 38: 1005-1014.   DOI   ScienceOn
10 Douglas, S. and T. J. Beveridge. 1998. Mineral formation by bacteria in natural microbial communities. FEMS Microbiol. Ecol. 26: 79-88.   DOI   ScienceOn
11 Ghosh, P., S. Mandal, B. D. Chattopadhyay, and S. Pal. 2005. Use of microorganism to improve the strength of cement mortar. Cem. Concr. Res. 35: 1980-1983.   DOI   ScienceOn
12 Ghosh, S., M. Biswas, B. D. Chattopadhya, and S. Mandal. 2009. Microbial activity on the microstructure of bacteria modified mortar. Cem. Concr. Compos. 31: 93-98.   DOI   ScienceOn
13 Chiara, B., G. Alessandro, M. Giorgio, R. Mila, T. Elena, and P. Brunella. 2007. Bacillus subtilis gene cluster involved in calcium carbonate biomineralization. J. Bacteriol. 189: 228-235.   DOI   ScienceOn
14 Bang, S. S., J. K. Galinat, and V. Ramakrishnan. 2001. Calcite precipitation induced by polyurethane-immobilized Bacillus pasteurii. Enzyme Microb. Technol. 28: 404-409.   DOI   ScienceOn
15 Borman, A. H., E. W. de Jong, M. Huizinga, D. J. Kok, P. Westbroek, and L. Bosch. 1982. The role in $CaCO_3$ crystallization of an acid $Ca^{2+}$-binding polysaccharide associated with coccoliths of Emiliania huxleyi. Eur. J. Biochem. 129: 179-183.   DOI   ScienceOn
16 Castanier, S., G. L. Metayer-Levrel, and J. P. Perthuisot. 1999. Ca-carbonates precipitation and limestone genesis - the microbiologist point of view. Sediment. Geol. 126: 9-23.   DOI   ScienceOn
17 Qiu, S., J. Yu, G. Zhu, O. Terasaki, Y. Nozue, W. Pang, and R. Xu. 1998. Strategies for the synthesis of large zeolite single crystals. Micropor. Mesopor. Mater. 21: 245-251.   DOI   ScienceOn
18 Achal, V., A. Mukherjee, P. C. Basu, and M. S. Reddy. 2009. Strain improvement of Sporosarcina pasteurii for enhanced urease and calcite production. J. Ind. Microbiol. Biotechnol. 36: 981-988.   DOI   ScienceOn
19 American Public Health Association (APHA). 1989. Standard Methods for the Examination of Water and Wastewater, 17th Ed. American Public Health Association, Washington, DC.
20 Tiano, P., L. Biagiotti, and G. Mastromei. 1999. Bacterial bio-mediated calcite precipitation for monumental stones conservation: Methods of evaluation. J. Microbiol. Methods. 36: 139-145.   DOI   ScienceOn
21 Kaluzynski, K., J. Pretula, and S. Penczek. 2007. Poly(ethylene glycol)-b-phosphorylated polyglycidols as $CaCO_3$ crystal growth modifiers. II. Macromolecular architecture versus the crystal size and shape and crystallization inhibition. J. Poly. Sci. A Polym. Chem. 45: 90-98.   DOI   ScienceOn
22 Ramachandran, S. K., V. Ramakrishnan, and S. S. Bang. 2001. Remediation of concrete using micro-organisms. ACI Mater. J. 98: 3-9.
23 Schultze-Lam, S., D. Fortin, B. S. Davis, and T. J. Beveridge. 1996. Mineralization of bacterial surfaces. Chem. Geol. 132: 171-181.   DOI   ScienceOn
24 Stocks-Fischer, S., J. K. Galinat, and S. S. Bang. 1999. Microbiological precipitation of $CaCO_3$. Soil Biol. Biochem. 31: 1563-1571.   DOI   ScienceOn