• Title/Summary/Keyword: arch-rise ratio

Search Result 38, Processing Time 0.024 seconds

In-Plane Stability of Concrete-Filled Steel Tubular Parabolic Truss Arches

  • Liu, Changyong;Hu, Qing;Wang, Yuyin;Zhang, Sumei
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1306-1317
    • /
    • 2018
  • For determining the in-plane buckling resistance of a concrete-filled steel tubular (CFST) arch, the current technical code GB50923-2013 specifies the use of an equivalent beam-column method which ignores the effect of rise-to-span ratio. This may induce a gap between the calculated result and actual stability capacity. In this study, a FE model is used to predict the buckling behavior of CFST truss arches subjected to uniformly distributed loads. The influence of rise-to-span ratio on the capacity of truss arches is investigated, and it is found that the stability capacity reduces as rise-to-span ratio declines. Besides, the calculations of equivalent slenderness ratio for different truss sections are made to consider the effect of shear deformation. Moreover, based on FE results, a new design equation is proposed to predict the in-plane strength of CFST parabolic truss arches under uniformly distributed loads.

Static and Dynamic Analysis for the Optimal Relation of Rise-Span-Girder Depth in Langer Arch Bridge (랭거아치교의 라이즈-경간-형고의 최적관계를 위한 정적 및 동적해석)

  • Hur, Eun Mi;Choi, Jee Hoon;Cho, Byoung Chil;Lee, Young Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.2
    • /
    • pp.319-327
    • /
    • 2002
  • Development of high-strength and light-weight structural steel as well as advancement in steel structure analysis enable construction of long span steel arch bridge. In an economic viewpoint, however, the design values of long span steel arch bridge needs to be optimized to reduce construction cost and achieve proper levels of structural safety. This study investigated the girder depth and the rise-span ratio for optimum design values, as well as the spectral analysis for protection against earthquake. The relationship between rise-span ratio and girder depth was derived based on the parametric studies of the basic span lengths of 60, 70, 80, 90, and 100m using a commercial Cis SAP2000. The equation relating the two variables was derived using linear regression.

Evaluation of In-plane Buckling and Ultimate Strength for Braced Arch Ribs (브레이스트 아치 리브의 면내 좌굴 및 극한강도 평가)

  • Park, Yong Myung;Heo, Taek Young;Lee, Pil Goo;Noh, Kyeung Bae
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.6 s.73
    • /
    • pp.759-768
    • /
    • 2004
  • The parametric analysis of vertically braced steel pipe arch ribs was performed to evaluate their in-plane buckling strengths and ultimate load-carrying capacities. The elastic and plastic behavior of braced arch ribs, unlike those of the usual single arch ribs, are affected by such factors as the flexural rigidity of the brace member, brace and pipe ribs spacing, loading situation, and arch curvature. To analyze these effects, several parameters were included, such as the rise-to-span ratio, the second moment of the inertia ratio of the rib to the brace member, the space ratio of the brace, the space ratio of the upper and lower ribs, the initial crookedness, the slenderness ratios of the braced arch ribs, and the loading conditions were considered with live-load-to-dead-load ratios. Based on the results of the parametric analyses, a proper profile of the braced arch rib was proposed. A large-scale structural experiment was also performed to evaluate the ultimate strength of the braced arch rib. The test results were determined to reasonably coincide with the analytical ones.

The Ultimate Load Capacity of the Parabolic Arches by Elasto-Plastic Model (탄소성 모델에 의한 포물선 아치의 극한 내하력 평가)

  • 조진구;박근수
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.3
    • /
    • pp.92-100
    • /
    • 2002
  • The advent or high-strength steel has enabled the arch structures to be relatively light, durable and long-spanned by reducing the cross sectional area. On the other hand, the possibility of collapse may be increased due to the slender members which may cause the stability problems. The limit analysis to estimate the ultimate load is based on the concept of collapse mechanism that forms the plastic zone through the full transverse sections. So, it is not appropriate to apply it directly to the instability analysis of arch structures that are composed with compressive members. The objective of this study is to evaluate the ultimate load carrying capacity of the parabolic arch by using the elasto-plastic finite element model. As the rise to span ratio (h/L) varies from 0.0 to 0.5 with the increment of 0.05, the ultimate load has been calculated fur arch structures subjected to uniformly distributed vertical loads. Also, the disco-elasto-plastic analysis has been carried out to find the duration time until the behavior of arch begins to show the stable state when the estimated ultimate load is applied. It may be noted that the maximum ultimate lead of the parabolic arch occurs at h/L=0.2, and the appropriate ratio can be recommended between 0.2 and 0.3. Moreover, it is shown that the circular arch may be more suitable when the h/L ratio is less than 0.2, however, the parabolic arch can be suggested when the h/L ratio is greater than 0.3. The ultimate load carrying capacity of parabolic arch can be estimated by the well-known formula of kEI/L$^3$where the values of k have been reported in this study. In addition, there is no general tendency to obtain the duration time of arch structures subjected to the ultimate load in order to reach the steady state. Merely, it is observed that the duration time is the shortest when the h/L ratio is 0.1, and the longest when the h/L ratio is 0.2.

Effects of Partially Distributed Step Load on Dynamic Response of the Plane Circular Arches (분포하중이 평면 원호 아치의 동적 응답에 미치는 영향)

  • 조진구;박근수
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.4
    • /
    • pp.89-96
    • /
    • 2001
  • In this study non-linear finite element analysis of dynamic response of steel arch under partially distributed dynamic load was discussed. Material and geometric non-linearities were included in finite element formulation and steel behavior was modeled with Von Mises yield criteria. Either radial or vertical dynamic load was dealt in numerical examples. Normal arch and arch with maximum shape imperfection of L/11,000 were studied. The analysis results showed that maximum displacement at the center of arch was occurred when 70% of arch span was loaded. The maximum displacement at a quarter of arch span was occurred when 50% of arch span was loaded and the displacement was larger than that of center of arch. Ratio of arch rise to arch span within 0.2∼-.3 seems to be appropriate for arch under radial or vertical load.

  • PDF

Free Vibration Analysis of Stepped Noncircular Arches with Shear Deformation (전단변형을 고려한 불연속 단면을 갖는 변화곡률 아치의 자유진동 해석)

  • Oh, Sang-Jin;Mo, Jeong-Man;Jin, Tae-Ki
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.768-771
    • /
    • 2005
  • The purpose of this paper is to investigate the free vibration of stepped noncircular arches. Taking into account the effects of axial deformation, rotatory inertia and shear deformation, the governing differential equations are solved numerically for the elliptic and sinusoidal geometries with hinged-hinged, hinged-clamped, and clamped-clamped end constraints. The lowest four natural frequencies are presented as functions of four non-dimensional system parameters: the arch rise to span length ratio, the slenderness ratio, the section ratio, and the discontinuous sector ratio.

  • PDF

Free Vibrations of Tapered Circular Arches with Constant Volume (일정체적 변단면 원호형 아치의 자유진동)

  • Lee, Byoung-Koo;Lee, Tae-Eun;Yoon, Hee-Min;Choi, Jong-Min
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.2
    • /
    • pp.144-152
    • /
    • 2010
  • This paper deals with free vibrations of the tapered circular arches with constant volume, whose cross sectional shape is the solid regular polygon. Volumes of the objective arches are always held constant regardless shape functions of the cross-sectional depth. The shape functions are chosen as the linear, parabolic and sinusoidal ones. Ordinary differential equations governing free vibrations of such arches are derived and solved numerically for determining the natural frequencies. In the numerical examples, hinged-hinged, hinged-clamped and clamped-clamped end constraints are considered. As the numerical results, the relationships between non-dimensional frequency parameters and various arch parameters such as rise ratio, section ratio, side number, volume ratio and taper type are reported in tables and figures.

Free Vibrations of Hinged-Hinged Arches with Constant Arc Length (일정한 곡선길이를 갖는 양단회전 아치의 자유진동)

  • Lee, Byoung-Koo;Lee, Tae-Eun;Kim, Gwon-Sik;Yoon, Hee-Min
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.46-49
    • /
    • 2008
  • This paper deals with the free vibrations of elastica shaped arches with constant arc length. The elastica shaped arches are formed by the post-buckled column whose arc length is always constant. The equations governing free, in-plane vibration of general arch in open literature are modified for applying the free vibrations of elastica shaped arch and solved numerically to obtain frequencies and mode shapes for hinged-hinged end constraints. The effects of rotatory inertia, rise to span length ratio and slenderness ratio on natural frequencies are presented. The frequencies of elastica and parabolic shaped arches are compared. Also, typical mode shapes are presented in figures.

  • PDF

Effects of Partially Distributed Loads on Dynamic Response of Plane Parabolic Arch (부분분포하중이 평면 포물선아치의 동적응답에 마치는 영향)

  • Cho, Jin-Goo;Park, Keun-Soo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.6
    • /
    • pp.21-28
    • /
    • 2004
  • This study aims to investigate the effects of partially distributed loads on the dynamic behaviour of steel parabolic arches by using the elasto-plastic finite element model based on the Von Mises yield criteria and the Prandtl-Reuss How rule. For this purpose, the vertical and the radial load conditions were considered as a distributed loading and the loading range is varied from 40% to 100% of arch span. Normal arch and arch with initial deflection were studied. The initial deflection of arch was assumed by the sinusoidal motile of ${\omega}_i\;=\;{\\omega}_O$ sin ($n{\pi}x/L$). Several numerical examples were tested considering symmetric initial deflection when the maximum initial deflection at the apex is fixed as L/1000. The analysis resluts showed that the maximum deflection at the apex of arch was occurred when 70% of arch span was loaded. The maximum deflection at the quarter point of arch span was occurred when 50% of arch span was loaded. It is known that the optimal rise to span ratio between 0.2 and 0.3 when the vertical or radial distributed load is applied. It is verified that the influence of initial deflection of radial load case is more serious than that of vertical load case.

Full-Scale Test on Precast Concrete Arch Bridge with Reinforced Joint and Backfill (보강된 이음부와 뒤채움을 적용한 조립식 프리캐스트 콘크리트 아치교량의 실물모형실험)

  • Chung, Chulhun;Joo, Sanghoon;Choi, Dongchan;Lee, Jongyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.389-402
    • /
    • 2014
  • In this paper, the load test of full-scale precast concrete arch bridges considering reinforced joint and backfill was conducted. It is an improved method that the reinforced joint enhanced the structural performance of conventional masonry arch system which was proposed by previous researchers. The models of full-scale test are $10m(span){\times}3m$ (rise) and $10m(span){\times}2m$ (rise), which are 2 meters in width. The critical load position was shown at a third-span from the results of the pre-analysis. Based on the this results, the positions of load, measuring items and points were determined in experiments. As a result, the maximum load capacity of the specimen $10m{\times}2m$, a relatively small rise to span ratio (compared to the specimen $10m{\times}3m$), was higher than the specimen $10m{\times}3m$. It was evaluated that all the specimens have sufficient structural performance on the design load.