• Title/Summary/Keyword: arc velocity

Search Result 126, Processing Time 0.025 seconds

The Production of TiCl4 from Titaniferrous Magnetite Slag by the Chlorination in a Fluidized Bed Reactor (함티탄자철광 Slag의 유동층 염소화에 의한 TiCl4의 제조)

  • Song, Ki-Young;Lee, Sang-Soon;Lee, Chul-Tae
    • Applied Chemistry for Engineering
    • /
    • v.4 no.1
    • /
    • pp.64-74
    • /
    • 1993
  • The chlorination of the titanium slag from titaniferrous magnetite by the arc-smelting in a fluidized bed reactor was investigated to produce $TiCl_4$ from domestic titaniferrous magnetite. The optimum conditions are as follows : reaction temperature; $950^{\circ}C$, reaction time; 90min, $Cl_2$ gas velocity; 3cm/sec, and petroleum coke-to-titanium slag weight ratio; 0.18. Also the mean diameter of titanium slag and petroleum coke was $44.6{\mu}m$ and $67.9{\mu}m$ respectively. Under these conditions 97.07% of Ti component in the titanium slag was chlorinated and the purity of $TiCl_4$ from this chlorination was 96.2%.

  • PDF

An Optimal Design of a Driving Mechanism for Air Circuit Breaker using Taguchi Design of Experiments (다구찌실험계획법을 활용한 기중차단기의 메커니즘 최적화)

  • Park, Woo-Jin;Park, Yong-ik;Ahn, Kil-Young;Cho, Hae-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.9
    • /
    • pp.78-84
    • /
    • 2022
  • An air circuit breaker (ACB) is an electrical protection device that interrupts abnormal fault currents that result from overloads or short circuits in a low-voltage power distribution line. The ACB consists of a main circuit part for current flow, mechanism part for the opening and closing operation of movable conductors, and arc-extinguishing part for arc extinction during the breaking operation. The driving mechanism of the ACB is a spring energy charging type. The faster the contact opening speed of the movable conductors during the opening process, the better the breaking performance. However, there is a disadvantage that the durability of mechanism decreases in inverse proportion to the use of a spring capable of accumulating high energy to configure the breaking speed faster. Therefore, to simultaneously satisfy the breaking performance and mechanical endurance of the ACB, its driving mechanism must be optimized. In this study, a dynamic model of the ACB was developed using the MDO(Mechanism Dynamics Option) module of CREO, which is widely used in multibody dynamics analysis. To improve the opening velocity, the Taguchi design method was applied to optimize the design parameters of an ACB with many linkages. In addition, to evaluate the improvement in the operating characteristics, the simulation and experimental results were compared with the MDO model and improved prototype sample, respectively.

Pneumatic Separation on Separating Unit of a Combine Harvester (콤바인 선별실(選別室)의 기류선별(氣流選別)에 관한 연구(硏究))

  • Chung, C.J.;Nam, S.I.;Joo, B.C.
    • Journal of Biosystems Engineering
    • /
    • v.13 no.3
    • /
    • pp.32-43
    • /
    • 1988
  • This study was attempted to investigate the pneumatic separation on separating unit of a combine harvester. The aerodynamic characteristics of threshed materials were analyzed by experiments. The air velocity distribution within the separation chamber was measured for various speeds of the winnower and suction fans to find out the operational and design conditions of the separating unit which would serve for reducing the grain loss from chaff outlet. The results of study arc summarized as follows: 1. Based on the separation curve of threshed materials analyzed, it was shown that three different kind. of materials-kernels, straw chaff, and leaf chaff were as a whole able to be separated pneumatically, regardless of varieties. However, a small amount of the separation grain loss may be expected to occur if the complete separation between kernels and straw chaff would be undertaken because some portion of their separation curve were overlapping. 2. The analysis of air velocity distribution showed that the separation chamber may be divided into two regions, the discharging and separating. The air velocity of the discharging region was 5-15 m/s and that of the separating region 2-5 m/s. 3. The air movement of the separation chamber may be a turbulence flow, being its speed became greater as it moves from the left to the right section of the separation chamber. The equi-speed line. of air flow had a steep gradient in between the discharging and the separation regions. The air velocity in the discharging region was much higher than the terminal velocity of kernels, because of which those kernels appearing in the region could be possibly exhausted as the grain loss from the chaff outlet. 4. The motion trajectory of threshed material in the separating region was dominantly affected by the winnower fan, on the other hand, its motion in the discharging region was affected by suction fan. 5. The grain loss from the chaff outlet was affected greatly by the winnower fan and the trace of kernel movement. It was observed that the optimum working speed to give minimum grain loss from chaff outlet for the combine tested should be maintained at 950~1,150 rpm for the winnower fan and 1,850 rpm for the suction fan. 6. It was shown that a large portion of grain loss from chaff outlet may occur when the kernels may bump against a portion of separation chamber wall and those kernels thus scattered into the discharging region were sucked by the suction fan. It was accordingly recommended that a new design of the wall of separation chamber so as to bump down kernels may be necessary to reduce grain loss from the chaff outlet.

  • PDF

Kinematics and Geometrical Structure of the Planetary Nebula NGC 6881 (행성상 성운 NGC 6881의 운동학적 특성과 기하학적 구조)

  • Lee, Sang-Min;Hyung, Siek
    • Journal of the Korean earth science society
    • /
    • v.28 no.7
    • /
    • pp.847-856
    • /
    • 2007
  • The Planetary nebula NGC 6881 displays quadrupole morphology and it also has a jet feature in its image. We investigated the line profiles of the optical region spectral emission lines, using the Hamilton Echelle Spectrograph (HES) at the Lick observatory. The HES data obtained in this study was the radiation coming from the inner region within the diameter of 4 second of arc. Expansion velocity was obtained, based on the strong emission line profiles of e.g. H, Hel, Hell, [OIII], [NII], [ArIII], [SII], and [SIII}, using the IRAF and StarLink/Dipso reduction packages. The HI recombination lines showed one single peak profile, while the He and forbidden strong lines displayed double peaks. The results of this study show that the outflow velocity of gas increases radially outwards due to the central stellar radiation pressure. It was concluded that three central rings appeared in the HST image are the result of a combined structure of bipolar cones (seen in e.g. HI lines) and a ring (seen in He, [SIII] lines) in projection.

Effects of 3D contraction on pebble flow uniformity and stagnation in pebble beds

  • Wu, Mengqi;Gui, Nan;Yang, Xingtuan;Tu, Jiyuan;Jiang, Shengyao
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1416-1428
    • /
    • 2021
  • Pebble flow characteristics can be significantly affected by the configuration of pebble bed, especially for HTGR pebble beds. How to achieve a desired uniform flow pattern without stagnation is the top priority for reactor design. Pebbles flows inside some specially designed pebble bed with arc-shaped contraction configurations at the bottom, including both concave-inward and convex-outward shapes are explored based on discrete element method. Flow characteristics including pebble retention, residence-time frequency density, flow uniformity as well as axial velocity are investigated. The results show that the traditionally designed pebble bed with cone-shape bottom is not the most preferred structure with respect to flow pattern for reactor design. By improving the contraction configuration, the flow performance can be significantly enhanced. The flow in the convex-shape configuration featured by uniformity, consistency and less stagnation, is much more desirable for pebble bed design. In contrast, when the shape is from convex-forward to concave-inward, the flow shows more nonuniformity and stagnation in the corner although the average cross-section axial velocity is the largest due to the dominant middle pebbles.

Moisture Sorption and Ultrasonic Velocity of Artificially Weathered Sitka Spruce (촉진열화목재의 흡습성과 초음파전달속도)

  • Kang, Ho-Yang;Park, Sang-Jin;Kim, Young-Sook
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.18-24
    • /
    • 2002
  • Small Sitka spruce specimens of 50×133×10 mm3 were artificially weathered in a chamber equipped with 340 mm xenon arc and water spray as part of the accelerated-weathering cycle. Specimens were exposed to only ultraviolet or ultraviolet with water spray for 10 and 20 hours. Physical properties of the weathered specimens were investigated by colorimetry, sorption and ultrasonic testing methods. The longer exposed to ultraviolet the less bright were the specimens. It was revealed that the water spray treatment accelerated the loss of brightness and increased the wettability. Among the specimens exposed to ultraviolet with water spray the specimens treated for 10 hours showed greater wettability than those for 20 hours, which might lose the wettability due to the excessive degradation on their surfaces. The ultrasonic velocities of the weathered specimens were obviously higher than those of the unweathered. It is considered that the accelerated weathering either increases the modulus of elasticity of wood or decrease the density of wood.

Seismic study of the Ulleung Basin crust and its implications for the opening of the East Sea (탄성파 탐사를 통해 본 울릉분지의 지각특성과 동해형성에 있어서의 의미)

  • Kim, Han Jun
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.1
    • /
    • pp.9-26
    • /
    • 1999
  • The Ulleung Basin (Tsushima Basin) in the southwestern East Sea (Japan Sea) is floored by a crust whose affinity is not known whether oceanic or thinned continental. This ambiguity resulted in unconstrained mechanisms of basin evolution. The present work attempts to define the nature of the crust of the Ulleung Basin and its tectonic evolution using seismic wide-angle reflection and refraction data recorded on ocean bottom seismometers (OBSs). Although the thickness of (10 km) of the crust is greater than typical oceanic crust, tau-p analysis of OBS data and forward modeling by 2-D ray tracing suggest that it is oceanic in character: (1) the crust consists of laterally consistent upper and lower layers that are typical of oceanic layers 2 and 3 in seismic velocity and gradient distribution and (2) layer 2C, the transition between layer 2 and layer 3 in oceanic crust, is manifested by a continuous velocity increase from 5.7 to 6.3 km/s over the thickness interval of about 1 km between the upper and lower layers. Therefore it is not likely that the Ulleung Basin was formed by the crustal extension of the southwestern Japan Arc where crustal structure is typically continental. Instead, the thickness of the crust and its velocity structure suggest that the Ulleung Basin was formed by seafloor spreading in a region of hotter than normal mantle surrounding a distant mantle plume, not directly above the core of the plume. It seems that the mantle plume was located in northeast China. This suggestion is consistent with geochemical data that indicate the influence of a mantle plume on the production of volcanic rocks in and around the Ulleung Basin. Thus we propose that the opening models of the southwestern East Sea should incorporate seafloor spreading and the influence of a mantle plume rather than the extension of the crust of the Japan Arc.

  • PDF

Convergence Characteristics of Preconditioned Euler Equations (예조건화된 오일러 방정식의 수렴특성)

  • 이상현
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.1
    • /
    • pp.27-37
    • /
    • 2004
  • The convergence characteristics of preconditioned Euler equations were studied. A perturbation analysis was conducted to understand the behavior of the preconditioned Euler equations. Various speed flows in a two-dimensional channel with a 10% circular arc in the middle of the channel were calculated. Roe's FDS scheme was used for spatial discretization and the LU-SGS scheme was used for time integration. It is shown that the convergence characteristics of pressure and velocity were maintained regardless of the Mach numbers but that the convergence characteristics of temperature were strongly related to the Mach number and became worse as the Mach number decreased. The perturbation analysis well explained the trend of the convergence characteristics and showed that the convergence characteristics are strongly related with the behavior o( the Preconditioning matrix.

Numerical analysis and Experiment to Determine Deformation Characteristics of PET Bottle under Compressive Load (압축하중시 PET병의 변형특성에 관한 수치해석 및 실험적 연구)

  • Cho, S.H.;Kwon, C.H.;Park, G.M.;Ko, Y.B.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.1
    • /
    • pp.83-86
    • /
    • 2014
  • Many have been performed to decrease the thickness of polyethylene terephthalate (PET) bottles to reduce the manufacturing cost. However, it is difficult to guarantee the mechanical strength under top-loading after decreasing the thickness. This paper investigates the large deformation characteristics of a PET bottle under a compressive load using experimental and finite element analysis (FEA) data. A round 1.65-L bottle is analyzed under a compressive velocity of 5 mm/min with a maximum load of 9,800 N in experiments. The arc length method is used in a nonlinear FEA to understand the buckling phenomenon of the PET bottle. From the analyzed results, a recommendation is made to restrict the top loading to less than 1,208 N, because the first buckling phenomenon occurred at a load of 1,208 N.

Study on optimal steering control of an unmanned cart (無人 搬送車의 最適 操向制御)

  • 김옥현;정성종
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.1
    • /
    • pp.19-25
    • /
    • 1987
  • An optimal control procedure is presented for steering of an unmanned cart which has two motored wheels on its left and right side. Steering, running and stopping are enabled by controlling the motor speed independently. An optimal proportional-plus-integral control is employed to eliminate steady state error which is sustained by a simple proportional control for tracking a circular arc path. A simple and readily-implemented suboptimal control is also examined. The suboptimal control gives comparable performance and therefore provides an effective approach for industrial application of the unmanned cart. Effects of design parameters of unmanned cart such as forward velocity, wheel radius and position of sensor are investigated. It is shown that within the practicable values of the parameters the controlled performance improves rapidly with increase of those parameters then the improvement becomes negligible, which suggests base values over which the parameters should be taken.