• Title/Summary/Keyword: arbiter

Search Result 52, Processing Time 0.026 seconds

Design and implementation of an improved MA-APUF with higher uniqueness and security

  • Li, Bing;Chen, Shuai;Dan, Fukui
    • ETRI Journal
    • /
    • v.42 no.2
    • /
    • pp.205-216
    • /
    • 2020
  • An arbiter physical unclonable function (APUF) has exponential challenge-response pairs and is easy to implement on field-programmable gate arrays (FPGAs). However, modeling attacks based on machine learning have become a serious threat to APUFs. Although the modeling-attack resistance of an MA-APUF has been improved considerably by architecture modifications, the response generation method of an MA-APUF results in low uniqueness. In this study, we demonstrate three design problems regarding the low uniqueness that APUF-based strong PUFs may exhibit, and we present several foundational principles to improve the uniqueness of APUF-based strong PUFs. In particular, an improved MA-APUF design is implemented in an FPGA and evaluated using a well-established experimental setup. Two types of evaluation metrics are used for evaluation and comparison. Furthermore, evolution strategies, logistic regression, and K-junta functions are used to evaluate the security of our design. The experiment results reveal that the uniqueness of our improved MA-APUF is 81.29% (compared with that of the MA-APUF, 13.12%), and the prediction rate is approximately 56% (compared with that of the MA-APUF (60%-80%).

Design of Crossbar Switch On-chip Bus for Performance Improvement of SoC (SoC의 성능 향상을 위한 크로스바 스위치 온칩 버스 설계)

  • Heo, Jung-Burn;Ryoo, Kwang-Ki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.3
    • /
    • pp.684-690
    • /
    • 2010
  • Most of the existing SoCs have shared bus architecture which always has a bottleneck state. The more IPs are in an SOC, the less performance it is of the SOC, Therefore, its performance is effected by the entire communication rather than CPU speed. In this paper, we propose cross-bar switch bus architecture for the reduction of the bottleneck state and the improvement of the performance. The cross-bar switch bus supports up to 8 masters and 16 slaves and parallel communication with architecture of multiple channel bus. Each slave has an arbiter which stores priority information about masters. So, it prevents only one master occupying one slave and supports efficient communication. We compared WISHBONE on-chip shared bus architecture with crossbar switch bus architecture of the SOC platform, which consists of an OpenRISC processor, a VGA/LCD controller, an AC97 controller, a debug interface, a memory interface, and the performance improved by 26.58% than the previous shared bus.

Direct Share: Photo Management System Based on Round-robin Concept-driven User Preference Feedback

  • Song, Tae-Houn;Jeong, Soon-Mook;Kim, Hyung-Min;Kwon, Key-Ho;Jeon, Jae-Wook
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.7
    • /
    • pp.1346-1367
    • /
    • 2011
  • As the size of camera modules is decreasing and as the computing performance of portable devices is improving, taking photos has become a part of daily life. However, existing photo management programs and products that manage such photos still require extensive user effort to facilitate the sharing and browsing of images. It is especially difficult for novice users to manage and share photos. In this paper, we develop a round-robin concept-driven user preference feedback mechanism for achieving direct photo sharing, instant display, and easy management using optimized user controls and user preference-driven classification. Compared with commercial photo management systems, our proposed solution provides new features: optimized user controls, direct sharing and instant display, and user preference feedback driven classification. These new features boost the round-robin concept-driven user preference feedback. This paper proposes a photo finder that automatically searches for photos in storage spaces or cameras. The proposed photo finder relies on user preference feedback to share photos by leveraging user preferences, and the round-robin connection transmits photos to the family's digital photo frame or web album by arbiter. The proposed method saves time and spares users the effort required for photo management. Moreover, this method does not merely direct photo sharing and simple photo management, but it also increases the satisfaction level of users viewing the photos.

TFT-LCD Controller Implementation Using DMA of High Performance in Multi-Bus Architecture (다중버스 아키텍처 구조에서 고성능 DMA를 이용한 TFT-LCD Controller 구현)

  • Lee, Kook-Pyo;Lee, Keun-Hwan;Yoon, Yung-Sup
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.8
    • /
    • pp.54-60
    • /
    • 2008
  • The bus architecture consists of a master initiating a communication transaction, a slave responding to the transaction, a arbiter selecting a master, a bridge connecting buses and so on. Recently this is more complicated and developed toward multi-bus architecture. In this paper, several cases of multi-shared bus architecture are discussed and in order to decrease the bridge latency, the architecture introducing a memory selector is proposed. Finally, a LCD controller using DMA master is integrated in this bus architecture that is verified due to RTL simulation and FPGA board test. DMA, LCD line buffer and SDRAM controller are normally operated in the timing simulation using ModelSim tool, and the LCD image is confirmed in the real FPGA board containing LCD panel.

An Offset and Deadzone-Free Constant-Resolution Phase-to-Digital Converter for All-Digital PLLs (올-디지털 위상 고정 루프용 오프셋 및 데드존이 없고 해상도가 일정한 위상-디지털 변환기)

  • Choi, Kwang-Chun;Kim, Min-Hyeong;Choi, Woo-Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.2
    • /
    • pp.122-133
    • /
    • 2013
  • An arbiter-based simple phase decision circuit (PDC) optimized for high-resolution phase-to-digital converter made up of an analog phase-frequency detector and a time-to-digital converter for all-digital phase-locked loops is proposed. It can distinguish very small phase difference between two pulses even though it consumes lower power and has smaller input-to-output delay than the previously reported PDC. Proposed PDC is realized using 130-nm CMOS process and demonstrated by transistor-level simulations. A 5-bit P2D having no offset nor deadzone using the PDC is also demonstrated. A harmonic-lock-free and small-phase-offset delay-locked loop for fixing the P2D resolution regardless of PVT variations is also proposed and demonstrated.

Implementation of a Scoreboard Array and a Port Arbiter for In-order SMT Processors (순차적 SMT Processor를 위한 Scoreboard Array와 포트 중재 모듈의 구현)

  • Heo, Chang-Yong;Hong, In-Pyo;Lee, Yong-Surk
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.6
    • /
    • pp.59-70
    • /
    • 2004
  • SMT(Simultaneous Multi Threading) architecture uses TLP(Thread Level Parallelism) and increases processor throughput, such that issue slots can be filled with instructions from multiple independent threads. Having multiple ready threads reduces the probability that a functional unit is left idle, which increases processor efficiency. To utilize those advantages for the SMT processors, the issue unit must control the flow of instructions from different threads and not create conflicts among those instructions, which make the SMT issue logic extremely complex. Therefore, our SMT architecture, which is modeled in this paper, uses an in-order-issue and completion scheme, and therefore, can use a simple issue mechanism with a scoreboard already instead of using register renaming or a reorder buffer. However, an SMT scoreboarding mechanism is still more complex and costlier than that of a single threaded conventional processor. This paper proposes an optimal implementation of a scoreboarding mechanism for an ARM-based SMT architecture.

Run-Time Hardware Trojans Detection Using On-Chip Bus for System-on-Chip Design (온칩버스를 이용한 런타임 하드웨어 트로이 목마 검출 SoC 설계)

  • Kanda, Guard;Park, Seungyong;Ryoo, Kwangki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.2
    • /
    • pp.343-350
    • /
    • 2016
  • A secure and effective on-chip bus for detecting and preventing malicious attacks by infected IPs is presented in this paper. Most system inter-connects (on-chip bus) are vulnerable to hardware Trojan (Malware) attack because all data and control signals are routed. A proposed secure bus with modifications in arbitration, address decoding, and wrapping for bus master and slaves is designed using the Advanced High-Performance and Advance Peripheral Bus (AHB and APB Bus). It is implemented with the concept that arbiter checks share of masters and manage infected masters and slaves in every transaction. The proposed hardware is designed with the Xilinx 14.7 ISE and verified using the HBE-SoC-IPD test board equipped with Virtex4 XC4VLX80 FPGA device. The design has a total gate count of 39K at an operating frequency of 313MHz using the $0.13{\mu}m$ TSMC process.

SoC Design for Malicious Circuit Attack Detection Using on-Chip Bus (온칩버스를 이용한 악성 회로 공격 탐지 SoC 설계)

  • Guard, Kanda;Ryoo, Kwang-ki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.885-888
    • /
    • 2015
  • A secure and effective on-chip bus for detecting and preventing malicious attacks by infected IPs is presented in this paper. Most system inter-connect (on-chip bus) are vulnerable to hardware Trojan (Malware) attack because all data and control signals are routed. A proposed secure bus with modifications in arbitration, address decoding, and wrapping for bus master and slaves is designed using the Advanced High-Performance and Advance Peripheral Bus (AHB and APB Bus). It is implemented with the concept that arbiter checks share of masters and manage infected masters and slaves in every transaction. The proposed hardware is designed with the Xilinx 14.7 ISE and verified using the HBE-SoC-IPD test board equipped with Virtex4 XC4VLX80 FPGA device. The design has a total gate count of 40K at an operating frequency of 250MHz using the $0.13{\mu}m$ TSMC process.

  • PDF

Improvement Plans on Defect Consulting Report in an Apartment Building through Analyzing on Formal Index and Quantitative Index (형식 및 질적요소 체계분석을 통한 공동주택 하자감정서의 개선방안)

  • Park, Jun-Mo;Seo, Deok-Seok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.3
    • /
    • pp.195-206
    • /
    • 2014
  • The main issue of defect dispute is consulting, reviewing, and finally judging as an arbiter. A defect consulting is represented a defect consulting report, but a business custom and a standard of judgment are different each consultants, and have many problems. This study reviews literature studies and institutional researches, set up a research structure. it has 7 indexes that 5 indexes are formal indexes, and the other are qualitative indexed. As a result of case study, formal indexes are respect on the whole. However, each appraiser has different ideas, and, is expected to delay on fixing a construction lawsuit practice. This study suggests to improve a defect consulting report, it is followed. In formal part, suggested to change configuration is adjusted and integrated similar items. In qualitative part, an evaluation system for appraiser and an education program for engineers is suggested.

Performance Analysis of Slave-Side Arbitration Schemes for the Multi-Layer AHB BusMatrix (ML-AHB 버스 매트릭스를 위한 슬레이브 중심 중재 방식의 성능 분석)

  • Hwang, Soo-Yun;Park, Hyeong-Jun;Jhang, Kyoung-Son
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.5_6
    • /
    • pp.257-266
    • /
    • 2007
  • In On-Chip bus, the arbitration scheme is one of the critical factors that decide the overall system performance. The arbitration scheme used in traditional shared bus is the master-side arbitration based on the request and grant signals between multiple masters and single arbiter. In the case of the master-side arbitration, only one master and one slave can transfer the data at a time. Therefore the throughput of total bus system and the utilization of resources are decreased in the master-side arbitration. However in the slave-side arbitration, there is an arbiter at each slave port and the master just starts a transaction and waits for the slave response to proceed to the next transfer. Thus, the unit of arbitration can be a transaction or a transfer. Besides the throughput of total bus system and the utilization of resources are increased since the multiple masters can simultaneously perform transfers with independent slaves. In this paper, we implement and analyze the arbitration schemes for the Multi-Layer AHB BusMatrix based on the slave-side arbitration. We implement the slave-side arbitration schemes based on fixed priority, round robin and dynamic priority and accomplish the performance simulation to compare and analyze the performance of each arbitration scheme according to the characteristics of the master and slave. With the performance simulation, we observed that when there are few masters on critical path in a bus system, the arbitration scheme based on dynamic priority shows the maximum performance and in other cases, the arbitration scheme based on round robin shows the highest performance. In addition, the arbitration scheme with transaction based multiplexing shows higher performance than the same arbitration scheme with single transfer based switching in an application with frequent accesses to the long latency devices or memories such as SDRAM. The improvements of the arbitration scheme with transaction based multiplexing are 26%, 42% and 51%, respectively when the latency times of SDRAM are 1, 2 and 3 clock cycles.