• Title/Summary/Keyword: aramid

Search Result 259, Processing Time 0.024 seconds

Flexural Performance Evaluation of HPFRCC with Aramid Fiber for Impact·Blast Resistance (내충격·방폭 성능 강화용 아라미드섬유 보강 HPFRCC의 휨성능 평가)

  • Jeon, Joong-Kyu;Kim, Sun-Gil;Jeon, Chan-Ki;Kim, Ki-Hyung
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2015.11a
    • /
    • pp.170-171
    • /
    • 2015
  • 본 논문에서는 내충격 방폭 성능 강화를 위해 개발된 유기계 단섬유 HPFRCC의 휨인성을 평가하였다. 유기계 단섬유 보강재는 아라미드섬유를 사용하였으며, 아라미드섬유 원사를 섬유가공 방법 중에 하나인 ATY(Air texturd yarn)공법을 통해 단섬유 형태로 제조하였다. 아라미드섬유 보강재를 혼입한 HPFRCC의 휨인성 시험을 통해 아라미드섬유의 내충격 방폭 성능 강화용 섬유보강재로의 성능을 평가하였다.

  • PDF

복합재료 성형기술

  • 전의진
    • Journal of the KSME
    • /
    • v.32 no.1
    • /
    • pp.18-27
    • /
    • 1992
  • 섬유강화 플라스틱을 시초로 복합재료가 상업적으로 생산, 판매되기 시작한지 어언 30여년이 되었다. 뛰어난 기계적 . 화학적 특성을 바탕으로 오늘날 복합재료는 신소재의 한 분야로 굳게 자리잡고 있다. 설계, 성형, 분석기술의 발전과 아울러 유리섬유 복합재료 이후에 특성이 뛰어난 복합재료 소재들이 개발되고 있어 복합재료의 응용범위를 더욱더 넓히고 있다. Boron, carbon, aramid섬유의 개발은 첨단 복합재료의 개발을 가능케 했으며 군용, 우주기기의 개발로 얻어진 결과들은 민간 항공기 또는 스포츠, 레저 분야에 많이 이용되고 있다. 민간 항공기의 많은 부분에 첨단 복합재료로 된 부품들이 사용되고 있으며 복합재료로된 골프채, 낚시대, 테니스채 그리고 스키 등을 우리 주변에서 손쉽게 찾아볼 수 있다. 이 글에서는 고분자 기지 복합재료를 중심으로 그 성형법 및 응용에 대하여 논하고 기타 특수용도 복합재료에 대해서 약술하고자 한다.

  • PDF

Experimental Investigation on Seismic Performance of RC Circular Columns Strengthened Using Highly-Ductile PET-AF Fiber Strand (고연성 PET-AF 스트랜드로 외부 보강한 RC 원형 기둥의 내진 성능에 관한 실험적 연구)

  • Chinzorigt, Gombosuren;Kim, So-Young;Choi, Donguk;Lim, Myung-Kwan;Lee, Chin-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.56-66
    • /
    • 2017
  • In this study, seismic strengthening performance of RC circular columns reinforced with high ductile PET and hybridized fibers(HF, PET + aramid) strand was experimentally compared and investigated. As a result, the maximum flexural strength and ductility capacity of all reinforced columns were improved than control column and fiber rupture did not occur at the ultimate stage. In addition, the resistive strength and displacement of the PET sheet 25 layers reinforcing column and the HF strand 1 layer reinforcing column were almost similar, so that 1 layer of HF strand showed the same lateral confinement effect as the PET sheet 25 layers. As a result of this experimental study, PET is considered to be suitable as seismic reinforcement material for RC structures in terms of flexural strength and ductility. However, in order to increase the possibility of application in the field, it is necessary to use a prefabricated PET sheet such as HF used in this study. The durability of PET needs investigation in the future.

Stress-Strain Behavior Characteristics of Concrete Cylinders Confined with FRP Wrap (FRP로 횡구속된 콘크리트의 응력-변형률 거동 특성)

  • Lee, Dae-Hyoung;Kim, Young-Sub;Chung, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.2
    • /
    • pp.135-144
    • /
    • 2007
  • Recently, fiber-reinforced plastic(FRP) wraps are blown as an effective material for the enhancement and rehabilitation of aged concrete structures. The purpose of this investigation is to experimentally investigate behavior of concrete cylinder wrapped with FRP materials. Experimental parameters include compressive strength of concrete cylinder, FRP material, and confinement ratio. This paper presents the results of experimental studies on the performance of concrete cylinder specimens externally wrapped with aramid, carbon and glass fiber reinforced Polymer sheets. Test specimens were loaded in uniaxial compression. Axial load, axial and lateral strains were investigated to evaluate the stress-strain behavior, ultimate strength ultimate strain etc. Test results showed that the concrete strength and confinement ratio, defined as the ratio of transverse confinement stress and transverse strain were the most influential factors affecting the stress-strain behavior of confined concrete. More FRP layers showed the better confinement by increasing the compressive strength of test cylinders. In case of test cylinders with higher compressive strength, FRP wraps increased the compressive strength but decreased the compressive sham of concrete test cylinders, that resulted in prominent brittle failure mode. The failure of confined concrete was induced by the rupture of FRP material at the stain, being much smaller than the ultimate strain of FRP material.

Adhesive Performance and Fracture Toughness Evaluation of FRP-Reinforced Laminated Plate (FRP 보강적층판의 접착성능 및 파괴인성평가)

  • Jung, Hong-Ju;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.6
    • /
    • pp.868-875
    • /
    • 2015
  • In order to replace existing slit type steel plate on the wooden structure joint, the FRP-reinforced laminated plates were produced. Four types of FRP-reinforced laminated plates were produced according to the type of reinforcement and adhesive, and before applying to the joint, the adhesion performance test according to KSF 3021 and KSF 2160 and the Compact Tension (CT) type fracture toughness test specified in ASTM D5045-99 were carried out. As a result of adhesion performance test, all GFRP textile, GFRP sheet, and GFRP Textile-Sheet type FRP-reinforced laminated plates satisfied the requirement of soaking delamination percentage with smaller than 5% based on KS standard. However, aramid type specimen satisfied the standard as the soaking delamination percentage of 4.8% but it did not satisfied the standard as the water proof soaking delamination percentage of 70%. As a result of fracture toughness test, the volume ratio of reinforcement to timber became 23% so that the strength of FRP-reinforced laminated plates increased by two to four times in comparison to the control specimen. It was confirmed that the GFRP Textile-Sheet type specimen was most resistant to the fracture most since the ratio of stress intensity factor compared with that of the control increased to 61% owing to the parallel arrangement of glass fiber to the load. As a result of tensile shear strength test using FRP-reinforced laminated plates and nonmetal dowels, it is about 12% lower than metal connectors.

Experimental Study on the Flexural Performance of Steel Beams Reinforced by AFRP Sheets (아라미드 섬유 쉬트를 이용한 철골 보 부재의 휨 보강 성능에 관한 실험적 연구)

  • Kim, Kang Seok;Nah, Hwan Seon;Kim, Kang Sik;Lee, Hyeon Ju;Lee, Kang Min
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.2
    • /
    • pp.61-69
    • /
    • 2011
  • Fiber Reinforced Plastic (FRP) sheets have been widely used to retrofit and rehabilitate RC structures, while in case of retrofitting steel structures, there are no codes and researches. It stems from configuration of member and characteristics of bonding behavior. This study focused on the static behavior of steel beams reinforcement by AFRP sheets. The main objective of the experimental programme was the evaluation of the force transfer mechanism, the increment of the beam load carrying capacity and the bending stiffness. A bending test was conducted on a H-shaped steel beam, with aramid FRP sheets bonded to its flanges. The mid-span deflection and the strain from three points along AFRP sheets were recorded Test results exhibit that the increment of the load-carrying capacity with reference to a mid-span deflection level of 15 mm(1/125mm of the clear span) was equal to 9.4% and for the two layers case, an elastic stiffness increment is slightly higher than one layer case.

Preparation and Characterization of Crosslinked Copolymer Membrane Containing Sulfonated Poly(ether sulfone) and p-Phenylene Terephthalamide Segments (Sulfonated Poly(ether sulfone)과 p-Phenylene Terephthalamide 세그먼트를 포함하는 가교 공중합체 멤브레인의 제조 및 특성 연구)

  • Kim, Jung-Min;Hwang, Seung-Sik;Cho, Chang-Gi
    • Polymer(Korea)
    • /
    • v.35 no.2
    • /
    • pp.106-112
    • /
    • 2011
  • Aromatic copolyamides were prepared and their applicability to proton exchange membrane was studied. The copolymers contain two segments; thermally stable and mechanically strong poly (p-phenylene terephthalamide) (PPTA), and easily processable and good film-forming polysulfone. For the copolymers, different ratios of amine-terminated sulfonated ether sulfone monomer, terephthaloyl chloride, and p-phenylene diamine were sequentially reacted. The obtained copolymers were mixed with trimethylolpropane triglycidyl ether (TMPTGE), thermally cured, and converted into proton exchange membranes for fuel cell application. The reactions at each step and the molecular characteristics of precursor copolymers were confirmed by $^1H$ NMR, FTIR, and titration. The performance of the membranes was measured in terms of water uptake and proton conductivity. The water uptake, ion exchange capacity (IEC), and proton conductivity of the membranes increased with the increase of sulfonated ether sulfone segment content. Membrane containing 60 mol% sulfonic acid sulfone segment showed 1.88 meq/g IEC value. Water uptake was limited less than 110 wt% and the highest proton conductivity was up to $7.4{\times}10^{-2}$ S/cm ($25^{\circ}C$, RH=100%).

Analysis of Tack Properties of Aramid/Phenolic Prepreg (아라미드섬유/페놀수지 프리프레그의 Tack성 분석)

  • Hong, Tae Min;Lee, Ji Eun;Hong, Young Ki;Lee, Jung Soon;Cho, Dae Hyun;Lee, Seung Goo
    • Journal of Adhesion and Interface
    • /
    • v.14 no.3
    • /
    • pp.117-120
    • /
    • 2013
  • The prepreg material is a sheet of the reinforcement pre-impregnated with a resin. In this study, two types of prepreg were prepared with a general phenolic resin and the polyvinyl butyral (PVB) modified phenolic resin, respectively, with resin content of 40 wt%. After resin impregnation, the prepregs were heat treated in an oven to make them the B-stage. Surface morphology of the prepreg was observed by using a scanning electron microscope (SEM). Tack property of the prepreg is one of the major properties that govern the ability of prepreg to be laid up. In this study, the tack of prepreg was measured under various test parameters by a probe tact test. Test parameters were contact time, contact force and debonding rate. Most of the tack properties of the prepreg increased with the test parameters. Then tack properties exhibited a linear behavior with test parameters before a saturation point. Also, the tack of prepreg was investigated in relation with the fibrillation phenomena involved in the prepreg surface with the debonding rate.

D-$\Pi$-A designed dye chromophores and nanoparticles: optical properties, chemosensor effects and PE/Aramid fiber colorations

  • Son, Young-A;Kim, Su-Ho;Kim, Young-Sung
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2010.03a
    • /
    • pp.40-40
    • /
    • 2010
  • Studies on attractive color changing property of dye chromophore and fluorophore have been greatly enjoyed in the related industrial and research fields such as optoelectronics, chemosensor, biosensor and so on. The optical property based on D-$\Pi$-A intramolecular charge transfer (ICT) system of chromophore molecules can be utilized as suitable sensing probes for checking media polarity and determining colorimetric chemosensing effect, especially heavy metal detection. These finding are obtained by absorption and emission properties. In this work, donor-acceptor D-$\Pi$-A type fluorescent dyes were designed and synthesized with the corresponding donor and acceptor groups. The selected donor moieties might be provided prominent amorphous properties which are very useful in designing and synthesizing functional polymers and in fabricating devices. Another reasons to choose are commercial availabilities in high purity and low price. Donor-bridge-acceptor (D-A) type dyes can produce impressive optical-physical properties, yielding them potentially suitable for applications in the synthesis of small functional organic molecules. Small organic functional molecules have unique advantages, such as better solubility, amorphous character, and represent an area of research which needs to be explored and developed. Currently, their applications in metalorganic compounds is rapidly expanding and becoming widespread in self-assembly processes, photoluminescence applications, chiral organocatalysts, and ingrafts with nanomaterials. Colloidal nanoparticles have received great attentions in recent years. The photophysical properties of nanoparticles, particularly in terms of brightness, photostability, emission color purity and broad adsorption range, are very attractive functions in many applications. To our knowledge background, colloidal nanoparticles have been enjoyed their applications in bio-probe research fields. This research interest can be raised by the advantages of the materials such as high photoluminescence quantum yields, sharp emission band, long-term photostability and broad excitation spectra. In recent, the uses of nanoparticles being embedded in a polymer matrix and binded on polymer surface have been explored and their properties such as photo-activation and strong photoluminescence have been proposed. The prepared chromophores and nanoparticles were investigated with absorption and emission properties, solvatochromic behaviors, pH induced color switching effects, chemosensing effects and HOMO/LUMO energy potentials with computer simulation. In addition, synthesized fluorophore dyes and particles were applied onto PE/Aramid fiber fluorescing colorations. And the related details were then discussed.

  • PDF

Mechanical Properties of NBR Rubber Composites Filled with Reinforced Fiber and Ceramics (강화섬유와 세라믹이 충진된 NBR 고무 복합체의 기계적 물성 특성)

  • Kwon, Byeong-Jin;Kim, Young-Min;Lee, Danbi;Park, Soo-Yong;Jung, Jinwoong;Chung, Ildoo
    • Journal of Adhesion and Interface
    • /
    • v.22 no.4
    • /
    • pp.118-127
    • /
    • 2021
  • In this study, the mechanical properties of vulcanized rubber were evaluated through compounding by controlling filler content to improve the mechanical properties of NBR rubber. Aramid and glass fibers with excellent heat resistance were used as fillers, and ceramics were additionally used in anticipation of a complementary effect, and as for the ceramic materials, needle-shaped and plate-shaped ceramics were used. Each filler was used in an amount of 5.0, 10.0, 15.0, and 20.0 phr in order to investigate the basic properties according to the amount of filler. To confirm the complementary effect through ceramic application, each 10.0 phr fiber and ceramic were mixed with 1:1 ratio to evaluate mechanical properties. As a result, it was confirmed that the decreasing ratio of tensile strength after heat aging was small in the order of aramid fiber, acicular ceramic, glass fiber, and plate ceramic in the case of applying the filler alone. In addition, the mechanical characteristics of vulcanized rubber using composite filler based on fibers and ceramics were evaluated, and it was confirmed that the composite filler had a complementary effect on thermal aging.