• Title/Summary/Keyword: approximation model

Search Result 1,474, Processing Time 0.032 seconds

Testing Homogeneity for Random Effects in Linear Mixed Model

  • Ahn, Chul H.
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.2
    • /
    • pp.403-414
    • /
    • 2000
  • A diagnostic tool for testing homogeneity for random effects is proposed in unbalanced linear mixed model based on score statistic. The finite sample behavior of the test statistic is examined using Monte Carlo experiments examine the chi-square approximation of the test statistic under the null hypothesis.

  • PDF

Constructions of Relational Database Model Using Rough Sets and Its Analysis (러프 집합을 이용한 관계데이터베이스 모델의 구성 및 해석)

  • 정구범;정환묵
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1996.10a
    • /
    • pp.337-339
    • /
    • 1996
  • In this paper, we construct rough relational database model using approximation concepts of rough set. Also, we analyze the relation between objects, attributes and attribute values and, propose the method that can generate flexible retrieval results.

  • PDF

An Animated Plot of Locally Linear Approximation Method

  • Seo, Han-Son
    • Communications for Statistical Applications and Methods
    • /
    • v.5 no.1
    • /
    • pp.77-84
    • /
    • 1998
  • ARES plot (Cook and Weisberg, 1987) idea is applied to a multiple regression model in which the relation between a response variable and some independent variable is nonlinear. This method is expected to show the impact on the function to which and independent variable should be transformed, as a variable is smoothly added to the model.

  • PDF

Study on Narrow Band Solution of the Radiative Transfer within a Cubical Enclosure by Nongray Gas Mixtures with Nonuniform Concentration Profiles (비균일 농도 분포를 갖는 비회색 혼합가스로 충만된 정육면체 내의 좁은 파장모델을 이용한 복사열전달 해석 연구)

  • Park, W.H.;Chun, S.H.;Kim, T.K.;Son, B.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.371-376
    • /
    • 2001
  • Radiative transfer by nongray gas mixtures with nonuniform concentration and temperature profiles were studied by using the statistical narrow-band model and ray-tracing method with the sufficiently accurate $T_{60}$ quadrature set. Transmittances through the nonhomogeneous gas mixtures were calculated by using the Curtis-Godson approximation. Three different cases with different temperature and concentration profiles were considered to obtain benchmark solutions for nongray gas mixtures with nonuniform concentration and temperature profiles. The solutions obtained from this study were verified and found to be very well matched with the previous solutions for uniform gas mixtures. The results presented in this paper can be used in developing various solution methods for radiative transfer by nongray gas mixtures.

  • PDF

The Control of a Bipedal Robot using ANFIS (ANFIS를 이용한 이족보행로봇 제어)

  • Hwang, Jae-Pil;Kim, Eun-Tai;Park, Mignon
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.523-525
    • /
    • 2004
  • Over the last few years, the control of bipedal robot has been considered a promising research field in the community of robotics. But the problems we encounter make the control of a bipedal robot a hard task. The complicated link connection of the bipedal robot makes it impossible to achieve its exact model. In addition, the joint velocity is needed to accomplish good control performance. In this paper a control method using ANFIS as an system approximator is purposed. First a model biped robot of a biped robot with switching leg influence is presented. Unlike classical method, ANFIS approximation error estimator is inserted in the system for tuning the ANFIS. In the entire system, only ANFIS is used to approximate the uncertain system. ANFIS tuning rule is given combining the observation error, control error and ANFIS approximation error. But this needs velocity information which is not available. So a practical method is newly presented. Finally, computer simulation results is presented to show this control method has good position tracking performance and robustness without need for leg switching acknowledgement.

  • PDF

Saddlepoint Approximation to the Smooth Functions of Means Model (평균 벡터의 평활함수모형에 대한 안부점근사 -스튜던트화 분산을 중심으로-)

  • 나종화;김주성
    • The Korean Journal of Applied Statistics
    • /
    • v.14 no.2
    • /
    • pp.333-344
    • /
    • 2001
  • 통계적 추론에 사용되는 많은 통계량들은 평균벡터의 평활함수의 형태로 표현이 가능하다. 본 연구에서는 이들 통계량들의 분포함수에 대한 안부점근사법을 제시하였다. 이 방법은 Na(1998)에서 제시된 일반적 통계량의 분포함수에 대한 안부점근사법이 평균벡터의 평활함수모형에 특히 유용하게 사용될 수 있음을 보인 것이다. 이 근사법은 정규근사에 비해 근사의 정도가 뛰어나며, 특히 통계량의 꼬리부분의 확률에 대해서도 정확도가 그대로 유지되는 장점이 있어 정밀한 추론이 요구되는 많은 문제에 효과적으로 사용될 수 있다. 모의 실험에 사용할 평균벡터의 평활함수 모형으로는 스튜던트화 분산을 고려하였다.

  • PDF

Heuristic Physical Theory of Diffraction for Impedance Polygon

  • Lee, Keunhwa;Park, Sanghyun;Kim, Kookhyun;Seong, Woojae
    • International Journal of Ocean System Engineering
    • /
    • v.3 no.1
    • /
    • pp.22-32
    • /
    • 2013
  • A heuristic physical theory of diffraction (PTD) for an acoustic impedance wedge is proposed. This method is based on Ufimtsev's three-dimensional PTD, which is derived for an acoustic soft or hard wedge. We modify the original PTD according to the process of physical optics (or the Kirchhoff approximation) to obtain a 3D heuristic diffraction model for an impedance wedge. In principle, our result is equivalent to Luebbers' model presented in electromagnetism. Moreover, our approach provides a useful insight into the theoretical basis of the existing heuristic diffraction methods. The derived heuristic PTD is applied to an arbitrary impedance polygon, and a simple PTD formula is derived as a supplement to the physical optics formula.

Combined Convection and Radiation in a Tube with Circumferential Fins and Circular Disks

  • Kim, Namjin;Lee, Jaeyong;Taebeom Seo;Kim, Chongbo
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.12
    • /
    • pp.1725-1732
    • /
    • 2002
  • Combined convection and radiation heat transfer in a circular tube with circumferential fins and circular disks is investigated for various operating conditions. Using a finite volume technique for steady laminar flow, the governing equations are solved in order to study the flow and temperature fields. The P- 1 approximation and the weighted sum of gray gases model (WSGGM) are used for solving the radiation transport equation. The results show that the total Nusselt number of combined convection and radiation is higher than that of pure convection. If the temperatures of the combustion gas and the wall in a tube are high, radiation becomes dominant. Therefore, it is necessary to evaluate the effect of radiation on the total heat transfer.

A Modified Enskog-Like Equation of Self-Diffusion Coefficients for Penetrable-Sphere Model Fluids

  • Suh, Soong-Hyuck;Liu, Hong-Lai
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1336-1340
    • /
    • 2011
  • Molecular dynamics simulations have been performed to investigate the transport properties of self-diffusion coefficients in the penetrable-sphere model system. The resulting simulation data for the product of the packing fraction and the self-diffusion coefficient exhibit a transition from an increasing function of density in lower repulsive systems, where the soft-type collisions are dominant, to a decreasing function in higher repulsive systems, where most particle collisions are the hard-type reflections due to the low-penetrability effects. A modified Enskog-like equation implemented by the effective packing fraction with the mean-field energy correction is also proposed, and this heuristic approximation yields a reasonably good result even in systems of high densities and high repulsive energy barriers.

Analytical Modeling and Simulation of Dual Material Gate Tunnel Field Effect Transistors

  • Samuel, T.S.Arun;Balamurugan, N.B.;Sibitha, S.;Saranya, R.;Vanisri, D.
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1481-1486
    • /
    • 2013
  • In this paper, a new two dimensional (2D) analytical model of a Dual Material Gate tunnel field effect transistor (DMG TFET) is presented. The parabolic approximation technique is used to solve the 2-D Poisson equation with suitable boundary conditions. The simple and accurate analytical expressions for surface potential and electric field are derived. The electric field distribution can be used to calculate the tunneling generation rate and numerically extract tunneling current. The results show a significant improvement of on-current and reduction in short channel effects. Effectiveness of the proposed method has been confirmed by comparing the analytical results with the TCAD simulation results.