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An Animated Plot of
Locally Linear Approximation Methodl

Han Son Seo?
Abstract

ARES plot (Cook and Weisberg, 1987) idea is applied to a multiple regression model
in which the relation between a response variable and some independent variable is
nonlinear. This method is expected to show the impact on the function to which an
independent variable should be transformed, as a variable is smoothly added to the
model.

1. Introduction

Graphical techniques are useful diagnostic tools in multiple regression analysis. For the
linear model there are many graphical methods for model comparison including added variable
plots (Cook and Weisberg, 1982; Atkinson, 1985; Belsley, Kuh and Welsch, 1980) and related
plots such as partial residual plots (Larsen and McCleary, 1972). Cook and Weisberg(1989)
proposed an animated plot which is called an ARES plot, an acronym for "Adding REgressors
Smoothly”. ARES plot provides graphically impact of adding a set of predictors to the model.
We assume two models to compare, linear model,

Y=X81+X:8,+¢ (1.1)

and a subset model with predictor X,
Y=X\p+e (1.2)
ARES plot begins with a model (1.2) then smoothly add a set of predictors X, according to

some control parameter Ae[0,1]. As A increases from 0 to 1 it represents a smooth

transition of model so that A=0 corresponds to fitting (1.1) and at A=1 the full model (1.2) is
fit. An animated plot of { 5; €;} gives a dynamic view of the effects of adding X; to model
(1.2) where 5} €, are, respectively, the fitted values and residuals obtained when the control

parameter is equal to A. Cook and Weisberg(1994) extended ARES plot to generalized linear

models.
Here we concentrated on the linearity issue. We consider the following model in which the
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relation between a response and some explanatory variable may be nonlinear.

Y=XB+A2)+¢ (1.3)
where B is unknown 1 by % vector, Z is an explanatory variable, & is independent of
X and Z, and f is unknown function. We consider another model of adding a variable to

model (1.3), which is represented by
Y=Xao+ g(Z)+ yW+e. 1.4)

Now we are concerned with the method of visualizing the impact on the changes of fby
adding variable W. Since E(Y| X,Z, W=Xa+g(2)+yW, E(Y| X,Z)= X+ AZ) and
EY|X,2) =E .Y X,Z W) =Xa+g(2)+yE(W| X,Z) if W is independent of X
given Z then B=a, AZ)=g(Z)+ yE(W| Z). The impact of adding a variable on function
f is expressed in terms of E(W| Z). Severe changes of f may indicate the importance of
W. For example, transition to a simpler form of f or enhancement of the resolution of f in
the plot will encourge W to be added to the model. For specification of function f, Johnson
and McCulloch(1987) suggested a locally linear approximation method which makes model (1.3)
expressed as a linear model. So using Johnson and McCulloch’s method ARES idea can be
applied to get an animation displaying smooth transition between the fit of (1.3) and the fit of
(1.4).

In section 2 Johnson and McCulloch’s method is reviewed and a dynamic added variable

plot is presented with an example. Some remarks are contained in section 3.

2. Dynamic Added-Variable Plot

2.1 Added-Variable Plots

Suppose that we have ¥, x; and z;, where y; and 2z, are scalars, x; is p-dimensional.
As previously, the y’s are the response variables, the x’s are vectors of explanatory
variables, and the z’'s are explanatory variables that may require transformation by the

unknown function f. We assume model (1.3) and are interested in discovering function f.
Johnson and McCulloch(1987) explained how the well known graphical methods, simple
residual plot, added-variable plot (Cook and Weisberg, 1982) and partial residual plot (Larsen

and Mcleary, 1972), fail to indicate the function f. Instead, they suggest an alternative
method based on the assumption that the function f is sufficiently smooth for a simple linear

approximation to f to work well locally.



An Animated Plot 79

For a linear representation of f, we first partition observations by their z value. The set
of »n observations is partitioned into subsets so that within each subset the values of the
variable z do not vary much relative to the overall variation in z. Within each subset of

our partitioning scheme we will assume that f is linear and the slope and intercept will be
allowed to vary among subsets. It is also important to choose the subsets so that the data is
not used up in pinning down the function f at a few points while gaining little information
about its overall. It is difficult to determine the optimal choice of partition schemes
analytically to balance all these factors. However, since there is no difficulty trying wvarious
partition schemes, if the outcome is insensitive to changes in partition schemes, then we are
reassured. Once the partition is chosen we then have the following model

yij=x175+ai+bi(zz}‘_;i)+')’wij+€ij i=1,....k j=1,...,%; (2.1)
where #, is the number of observations in the ¢ th subset and % is the number of
subsets. At (2.1) we have used the approximation Az;)= a;+ b,(z;— z;) where z, is the

mean to the z values of the observations in the 7th subset. Model (2.1) is then a linear
model and is easily fit. Once the estimates have been computed, we plot the estimates of the

a;'s against the Z’s. This plot then is examined in the hope that a natural function f is

evident. For example, see Johnson and McCulloch(1987).
2.2 Dynamic Added-Variable Plot

A visual method which can show the effect of adding a variable W to the model (1.3)
smoothly is now suggested. From now on, to avoid ambiguity of notation we use one

subscript for each variable, for example, 2z, means the :th value of Z variable. .z-, still
denotes the mean of the z values of the observations in the [/ th subset. Let D, and Z, be
n by % matrices of which (7, ))th element is, respectively, 1 and (z,— z,) if z, belongs to

{ th subset, and zero otherwise.
Model(2.1) can be written as

Y=XB+D,at+ Zb+ yW+e
=Us+ yW+e (2.2)

where X is a n by p fixed known matrix, 8, @, bare p by 1, 2 by 1, 2 by 1

vectors respectively, and W is # by 1 known vector, 7 is an unknown scalar and

U=(X:1,:Z,) 6=(8 ab)’. Let Q, be the projection operator for the orthogonal
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complement of the space spanned by the columns of U. Then modified version of (2.2) is
Y=Us"+7rW+e (2.3)

where W= Q W/ 1Q.WIl, &' =0+ H{UTU)'UTW. For each 0 < A < 1 we estimate
a=(8" )7 by
a= (ViAo Ty 2.4)

where ¢ is a p by 1 vector of zeros except for a single 1 corresponding to W, and
V=(U W, a=(" "
From (2.5) we get
d=(UTOTUTU-AWWDY. (2.5)
And we finally get
a=R? (2.6)
where R=( Opxp * Tpxp: Opxr) .

Let @; denote the estimator of @ when the control parameter is equal to A. At A=0 a;
is the ordinary least squares regression of Y on X, D, and Z, . As A increases from 0
to 1, @, becomes a sequence of estimators that represent the effect of adding W smoothly
to the model (1.3). At A=1 Zr\,l corresponds to the regression model of Y on X, D, ,

Z, and W. An animated plot of { @y, 2z, } where a,; is estimator of a in the i th subset

with control parameter of A, provides a dynamic view of the effect on Az) as W is added
to the model which already includes X and Z.

2.3 Example

A program using XLISP-STAT (Tierney, 1990) is made for the simulation study. The
program consists of three parts, determining partitioning scheme, computing estimates and
drawing a dynamic plot. To determine partitioning scheme through graphics, values of added
variable is displayed (we assume that values are already ordered). And once we determine the
number of partition, same number of lines is drawn on the plot with same intervals. Points
between lines belong to same subset. Using the mouse you may move the position of each
line and determine the final partitioning scheme (See Figure 1 (a)) . Given a partitioning
scheme, estimates are computed and a plot shown in Figure 1 (b) is made. As holding down

the mouse button on the slider, scroll bar is moved, the display value of A is changed and so



An Animated Plot 81

is the plot dynamically.
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Figure 1. (a) Plot for partitioning (b) Initial image of animated plot
Example)

Three independent variables X;, X, and Z were generated independently from uniform

random generator with ranges (40, 80), (10, 60) and (10, 60) respectively. ¥ was generated
as 0.31X,+0.71X,+(Z—10)(Z—60) + €, where €; is a standard normal random variable.

Added variable W was generated as (Z2+600)/100+ &, where &, is another standard

normal random variable independent of &;. Table 1 contains the data and partitioning
schemes.

Using partition scheme I four frames of an animated plot of { 5;,-, Z } for adding W after
X:, X, and Z are shown at Figure 2. Vertical axis has been scaled to have values
between -1 and 1. The axis scales are provided on only the first frame and the scales are
identical for all frames. The first frame is for A=0 and thus corresponds to the Johnson and
McCulloch’s added variable plot. The second , the third and the fourth frame in Figure 2
correspond to A = 0.3, 0.6, and 1 respectively. The first frame indicates a substantial
nonlinearity. As A moves from 0 to 1 the points beyond 40 move to the down while those up
to 40 move up. At A = 1 plot gives a clear message to warrant linear model. Thus the effect

of adding W to the model is to make a linear fit possible. Figure 3 and Figure 4 is obtained

from the second and the third partitioning scheme respectively. All plots are similar to Figure
2.
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Table 1. The data and Partitioning Schemes for example.

partition
case y X1 X2 z W T —
1 43.4 79 16 10 6.9 1 11
2 34.5 56 18 11 7.13 1 1 1
3 25.5 64 29 12 6.49 1 11
4 34.8 79 48 13 7.86 1 11
5 7.14 51 27 15 8.55 21 2
6 -20.7 71 12 16 8.4 21 2
7 -0.964 74 59 19 9.65 2 2 2
8 -35.9 73 12 20 10.05 2 2 3
9 -35.2 78 34 21 10.05 2 2 3
10 -32.7 65 31 22 12.2 3 2 3
11 -35.3 59 49 23 12.7 3 3 3
12 -59.3 72 24 25 11.3 3 3 ¢4
13 -47.5 79 35 26 12.4 3 3 14
14 -58.04 48 32 27 11.9 3 3 ¢4
15 -67.6 42 31 27 14.3 3 3 4
16 -69.6 65 14 27 12.6 3 3 4
17 -66.6 40 37 28 13.8 3 3 4
18 -75.2 48 27 30 12.7 3 45
19 -61.02 54 27 30 15.5 3 4 5
20 -43.4 73 55 31 13.7 4 4 5
21 -50.2 71 45 36 19.1 4 5 6
22 -74.5 45 20 38 20.7 4 5 6
23 -73.6 48 27 39 21.2 5 5 6
24 -80.1 59 26 40 22.3 5 5 7
25 -59.5 47 44 41 22.9 5 6 7
26 -81 59 14 43 25.05 5 6 7
27 -46.1 42 59 45 25.7 5 6 8
28 -41.9 54 50 47 28.7 5 7 8
29 -40.6 68 28 47 28.4 5 7 8
30 -24.7 50 46 50 29.1 6 7 9
31 -12.4 65 36 52 33.8 6 7 9
32 -1.97 73 37 55 37.9 6 810
33 -8.5 66 16 55 37.6 6 810
34 9.77 63 28 56 36.2 7 810
35 14.03 59 38 56 38.4 7 810
36 28.6 59 44 57 38.6 7 810
37 10.8 67 30 57 38.2 7 810
38 41.7 54 53 58 38.5 7 810
39 49.5 72 49 59 41.2 7 810
40 35.8 75 38 59 38.7 7 810
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Figure 2. Animated plot for the function f using partition I
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Figure 3. Animated plot for the function f using partition IL
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Figure 4. Animated plot for the function f using partition IIL

3. Remarks

83

The dynamic plot described in this paper supplies all informations which can be derived
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from ARES plot. But while ARES plot is based on the linear form of f and concerns the

effect of adding variable, animated locally approximation method assumes general form of f
so that the applicability is extended. Note that extending the suggested methodology to adding
several variables simultaneously is straightforward.
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