• Title/Summary/Keyword: approximation coefficients

Search Result 257, Processing Time 0.026 seconds

Walsh Analysis of the State of Mixture in Heterogeneous Media and its Application (비균질체의 혼합상태에 대한 Walsh해석과 응용)

  • 박진무
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.1
    • /
    • pp.164-169
    • /
    • 1986
  • Walsh analysis is applied to the numerical specification of the volume distribution which is the key parameter in the formulation of the constitutive equations of heterogeneous media, indicating the geometrical state of the mixture. An example of two-dimensional volume distribution, its approximation, and the Walsh correlation coefficients are presented and the change of the information distribution in the operations is investigated. The phenomena of information concentration upon the large-scale Walsh coefficients are applied to the volumetric response of porous slids, clarifying the validity of the spherical-model calculation.

Stress Intensity Factor Calculation for the Semi-elliptical Surface Flaws on the Thin-Wall Cylinder using Influence Coefficients (영향계수를 이용한 원통용기 표면결함의 응력확대계수의 계산)

  • Jang, Chang-Heui;Moonn, Ho-Rim;Jeong, Ill-Seok
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.280-285
    • /
    • 2001
  • As an integral part of the probabilistic fracture mechanics analysis, stress intensity factor calculation scheme for semi-elliptical surface flaws in thin-walled cylinder has been introduced. The approximation solution utilizes the influence coefficients to calculate the stress intensity factor at the crack tip. This method has been compared with other solution methods including 3-D finite element analysis for cooldown boundary condition. The analysis results confirmed that the simplified methods provided sufficiently accurate stress intensity factor values for axial semi-elliptcal flaws on the surface of the reactor pressure vessel.

  • PDF

Image Authentication and Restoration Using Digital Watermarking by Quantization of Integer Wavelet Transform Coefficients

  • Ahsan, Tanveer;Chong, Ui-Pil
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.13 no.4
    • /
    • pp.187-193
    • /
    • 2012
  • An image authentication scheme for gray scale image through embedding a digital watermark by quantization of Integer Wavelet Transform (IWT) coefficients of the image is proposed in this paper. Proposed method is designed to detect modification of an image and to identify tampered location of the image. To embed the watermark mid-frequency band of a second level IWT was used. An approximation of the original image based on LL band was stored in LSB bits of the pixel data as a recovery mark for restoration of the image. Watermarked image has achieved a good PSNR of 40 dB compared to original cover image. Restored image quality was also very good with a PSNR of more than 35 dB compared to unmodified watermarked image even when 25% of the received image is cropped. Thus, the proposed method ensures a proper balance between the fidelity of the watermarked image and the quality of the restored image.

The Added Mass and Damping Coefficients of and the Excitation Forces on Four Axisymmetric Ocean Platforms

  • Kwang-June,Bai
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.20 no.2
    • /
    • pp.27-36
    • /
    • 1983
  • This paper presents numerical results of the added mass and damping coefficients of vertical axisymmetric bodies on or under the free surface. Also computed are the excitation forces on these bodies due to an incident regular wave system. The numerical scheme employs a localized finite-element method, which is based on the theory of the calculus of variations. The excitation forces and moments on a submerged half-spheroid lying on the bottom are computed and compared with the results obtained by others. he agreement is good. Several specific types of floating vertical axisymmetric platforms are considered for ten different wave lengths, in connection with the design of an ocean-thermal-energy converter platform. The added mass and damping coefficient, as well as the excitations, are presented. It is shown that simple strip theory gives a good approximation of the sway(and pitch) added mass for a disc platform having a long circular cylinder.

  • PDF

Free vibration of symmetric angle-ply layered conical shell frusta of variable thickness under shear deformation theory

  • Viswanathan, K.K.;Javed, Saira;Aziz, Zainal Abdul
    • Structural Engineering and Mechanics
    • /
    • v.45 no.2
    • /
    • pp.259-275
    • /
    • 2013
  • Free vibration of symmetric angle-ply layered conical shell frusta of variable thickness is analyzed under shear deformation theory with different boundary conditions by applying collocation with spline approximation. Linear and exponential variation in thickness of layers are assumed in axial direction. Displacements and rotational functions are approximated by Bickley-type splines of order three and obtained a generalized eigenvalue problem. This problem is solved numerically for an eigenfrequency parameter and an associated eigenvector of spline coefficients. The vibration of three and five-layered conical shells, made up of two different type of materials are considered. Parametric studies are made for analysing the frequencies of the shell with respect to the coefficients of thickness variations, length-to-radius ratio, length-to-thickness ratio and ply angles with different combination of the materials. The results are compared with the available data and new results are presented in terms of tables and graphs.

Geometrical Comparisons between Rigorous Sensor Model and Rational Function Model for Quickbird Images

  • Teo, Tee-Ann;Chen, Liang-Chien
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.750-752
    • /
    • 2003
  • The objective of this investigation is to compare the geometric precision of Rigorous Sensor Model and Rational Function Model for QuickBird images. In rigorous sensor model, we use the on-board data and ground control points to fit an orbit; then, a least squares filtering technique is applied to collocate the orbit. In rational function model, we first use the rational polynomial coefficients provided by the satellite company. Then the systematic bias of the coefficients is compensated by an affine transformation using ground control points. Experimental results indicate that, the RFM provides a good approximation in the position accuracy.

  • PDF

Efficient estimation and variable selection for partially linear single-index-coefficient regression models

  • Kim, Young-Ju
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.1
    • /
    • pp.69-78
    • /
    • 2019
  • A structured model with both single-index and varying coefficients is a powerful tool in modeling high dimensional data. It has been widely used because the single-index can overcome the curse of dimensionality and varying coefficients can allow nonlinear interaction effects in the model. For high dimensional index vectors, variable selection becomes an important question in the model building process. In this paper, we propose an efficient estimation and a variable selection method based on a smoothing spline approach in a partially linear single-index-coefficient regression model. We also propose an efficient algorithm for simultaneously estimating the coefficient functions in a data-adaptive lower-dimensional approximation space and selecting significant variables in the index with the adaptive LASSO penalty. The empirical performance of the proposed method is illustrated with simulated and real data examples.

Damage Detection in Time Domain on Structural Damage Size (구조물의 손상크기에 따른 시간영역에서의 손상검출)

  • Kwon Tae-Kyu;Yoo Gye-Hyoung;Lee Seong-Cheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.6 s.183
    • /
    • pp.119-127
    • /
    • 2006
  • A non-destructive time domain approach to examine structural damage using parameterized partial differential equations and Galerkin approximation techniques is presented. The time domain analysis for damage detection is independent of modal parameters and analytical models unlike frequency domain methods which generally rely on analytical models. The time history of the vibration response of the structure was used to identify the presence of damage. Damage in a structure causes changes in the physical coefficients of mass density, elastic modulus and damping coefficients. This is a part of our ongoing effort on the general problem of modeling and parameter estimation for internal damping mechanisms in a composite beam. Namely, in detecting damage through time-domain or frequency-domain data from smart sensors, the common damages are changed in modal properties such as natural frequencies, mode shapes, and mode shape curvature. This paper examines the use of beam-like structures with piezoceramic sensors and actuators to perform identification of those physical parameters, and detect the damage. Experimental results are presented from tests on cantilevered composite beams damaged at different locations and different dimensions. It is demonstrated that the method can sense the presence of damage and obtain the position of a damage.

Ionization and Attachment Coefficients in CF4, CH4, Ar Mixtures Gas (CF4, CH4, Ar 혼합기체의 전리와 부착계수)

  • Kim, Sang-Nam
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.1
    • /
    • pp.13-17
    • /
    • 2012
  • Ionization and Attachment Coefficients in pure $CH_4$, $CF_4$ and mixtures of $CF_4$ and Ar, have been analyzed over a range of the reduced electric field strength between 0.1 and 350[Td] by the two-term approximation of the Boltzmann equation (BEq.) method and the Monte Carlo simulation (MCS). The calculations of electron swarm parameters require the knowledge of several collision cross-sections of electron beam. Thus, published momentum transfer, ionization, vibration, attachment, electronic excitation, and dissociation cross-sections of electrons for $CH_4$, $CF_4$ and Ar, were used. The results of the Boltzmann equation and the Monte Carlo simulation have been compared with the data presented by several workers. The deduced transport coefficients for electrons agree reasonably well with the experimental and simulation data obtained by Nakamura and Hayashi. The energy distribution function of electrons in $CF_4$-Ar mixtures shows the Maxwellian distribution for energy. That is, f(${\varepsilon}$) has the symmetrical shape whose axis of symmetry is a most probably energy. The proposed theoretical simulation techniques in this work will be useful to predict the fundamental process of charged particles and the breakdown properties of gas mixtures.

Measurement of Absorption and Scattering Coefficients of Biological Tissues by Time-Resolved Reflectance Method (시간 분해 반사율에 의한 생체조직의 흡수계수와 산란계수 측정)

  • Jeon, Kye-Jin;Park, Seung-Han;Kim, Ung;Yoon, Gil-Won
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.4
    • /
    • pp.499-505
    • /
    • 1997
  • A non-invasive technique to measure absorption and scattering coefficients was investigated The reflected backscattered light from the surface of phantom and biological tissue was obtained by using a time-correlated single photon counting system in pico-second time domain. The absorption and scattering coefficients were acquired by the time of peak and asymptotic behavior of the time-resolved reflectance curve and agreed well the ones that is obtained with deconvolution method It was found that the approximation method was good for biological medium to calculate optical properties due to its convenience and accuracy.

  • PDF