• Title/Summary/Keyword: application layer

Search Result 2,948, Processing Time 0.03 seconds

Improvement of Permeation of Solvent-free Multi-layer Encapsulation of Thin Films on Polyethylene Terephthalate (PET) (고분자 기판위에 유기 용매를 사용하지 않은 다층 박막 Encapsulation 기술 개발)

  • Han Jin-Woo;Kang Hee-Jin;Kim Jong-Yeon;Seo Dae-Shik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.8
    • /
    • pp.754-757
    • /
    • 2006
  • The inorganic multi-layer thin film encapsulation was newly adopted to protect the organic layer from moisture and oxygen. Using the electron beam, sputter, inorganic multi-layer thin-film encapsulation was deposited onto the Polyethylene Terephthalate (PET) and their interface properties between inorganic and organic layer were investigated. In this investigation, the SiON, $SiO_2$ and parylene layer showed the most suitable properties. Under these conditions, the WVTR for PET can be reduced from level of $0.57g/m^2/day$ (bare subtrate) to $1*10^{-5}g/m^2/day$ after application of a SiON and $SiO_2$ layer. These results indicates that the $PET/SiO_2/SiON/Parylene$ barrier coatings have high potential for flexible organic light-emitting diode(OLED) applications.

2-Layer Fuzzy Controller for Behavior Control of Mobile Robot (이동로봇의 행동제어를 위한 2-Layer Fuzzy Controller)

  • Sim, Kwee-Bo;Byun, Kwang-Sub;Park, Chang-Hyun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.3
    • /
    • pp.287-292
    • /
    • 2003
  • The ability of robot is being various and complex. The robot is utilizing distance, image data and voice data for sensing its circumstance. This paper suggests the 2-layer fuzzy control as the algorithm that control robot with various sensor information. In a obstacle avoidance, it utilizes many range finders and classifies them into 3parts(front, left, right). In 3 sub-controllers, the controller executes fuzzy conference. And then it executes combined control with a combination of outputs of 3 sub-controllers in the second step. The text compares the 2-layer fuzzy controller with the hierarchical fuzzy controller that has analogous structure. And the performance of the 2-layer fuzzy controller is confirmed by application this controller to robot following, simulation to each other and real experiment.

Magnetic and Electrical Properties of the Spin Valve Structures with Amorphous CoNbZr

  • Cho, Hae-Seok
    • Journal of Magnetics
    • /
    • v.2 no.3
    • /
    • pp.96-100
    • /
    • 1997
  • A spin valve structure of NiO(40 nm)/Co(2 nm)/Cu(2.6 nm)/Co(x nm)/Ta(5 nm) has been investigated for the application of magnetic random access memory (MRAM). The spin valve structure exhibited very large difference in the coercivities between pinned and free layers, a relatively high GMR ratio, and a low free layer coercivity. The spin valves were prepared by sputtering and were characterized by dc 4-point probe, and VSM. The spin valves with combined free layer exhibited a maximun GMR ratio of 10.4% with a free layer coercivity of about 82 Oe. The spin valves with a single 10 nm thick a-CoNbZr free layer exhibited a GMR ratio of about 4.3% with a free layer coercivity of about 12 Oe. The GMR ratio of the spin valves increased by addition of Co between Cu and a-CoNbZr. It has been confirmed that the coercivity of free layer can be decreased by increasing the thickness of a-CoNbZr. It has been confirmed that the coercivity of free layer can be decreased by increasing the thickness of a-CoNbZr layer without losing the GMR ratio substantially, which was mainly due to high resistivity of the amorphous "layers".

  • PDF

Large Eddy Simulation of Shock-Boundary Layer Interaction

  • Teramoto, Susumu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.426-432
    • /
    • 2004
  • Large-Eddy Simulation (LES) is applied for the simulation of compressible flat plate boundary with Reynolds number up to 5 X 10$^{5}$ . Numerical examples include shock/boundary layer interaction and boundary layer transition, aiming future application to the analysis of transonic fan/compressor cascades. The present LES code uses hybrid com-pact/WENO scheme for the spatial discretization and compact diagonalized implicit scheme for the time integration. The present code successfully predicted the bypass transition of subsonic boundary layer. As for supersonic turbulent boundary layer, mean and fluctuation velocity of the attached boundary, as well as the evolution of the friction coefficient and the displacement thickness both upstream and downstream of the separation region are all in good agreement with experiment. The separation point also agreed with the experiment. In the simulation of the shock/laminar boundary layer interaction, the dependence of the transition upon the shock strength is reproduced qualitatively, but the extent of the separation region is overpredicted. These numerical examples show that LES can predict the behavior of boundary layer including transition and shock interaction, which are hardly managed by the conventional Reynolds-averaged Navier-Stokes approach, although there needs to be more effort before achieving quantitative agreement.

  • PDF

Oxidation Behavior of Ti1-xAlxN Barrier Layer for Memory Devices (메모리소자를 위한 Ti1-xAlxN 방지막의 산화 거동)

  • Park, Sang-Shik
    • Korean Journal of Materials Research
    • /
    • v.12 no.9
    • /
    • pp.718-723
    • /
    • 2002
  • $Ti_{1-x}$ $Al_{ x}$N thin films as barrier layer for memory devices application were deposited by reactive magnetron sputtering. The crystallinity, micro-structure, oxidation resistance and oxidation mechanism of films were investigated as a function of Al content. Lattice parameter and grain size of thin films were decreased with increasing the Al content Oxidation of the film with higher Al content is slow and then, total oxide thickness is thinner than that of lower Al content film. Oxide layer formed on the surface is AlTiNO layer. Oxidation of $Ti_{1-x}$ /$Al_{x}$ N barrier layer is diffusion limited process and thickness of oxide layer with oxidation time increased with a parabolic law. The activation energy of oxygen diffusion, Ea and diffusion coefficient, D of $Ti_{0.74}$ /X$0.74_{0.26}$N film is 2.1eV and $10^{-16}$ ~$10^{-15}$ $\textrm{cm}^2$/s, respectively. $_Ti{1-x}$ /$Al_{x}$ XN barrier layer showed good oxidation resistance.

Improvement of Color Purity Using Hole Blocking Layer in Hybrid White OLED (Hole Blocking Layer 사용에 따른 하이브리드 백색 OLED의 색순도 향상에 관한 연구)

  • Kim, Nam-Kyu;Shin, Hoon-Kyu;Kwon, Young-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.12
    • /
    • pp.837-840
    • /
    • 2014
  • Novel materials of $Zn(HPB)_2$ and Ir-complexes were respectively synthesized as blue or red emitting material. White Organic Light Emitting Diodes (OLED) were fabricated by using $Zn(HPB)_2$ for a blue emitting layer, Ir-complexes for a red emitting layer and $Alq_3$ for a green emitting layer. White OLED was fabricated by using double emitting layers of $Zn(HPB)_2$ and $Alq_3:Ir$-complexes, and hole blocking layer of BCP. We also varied the thickness of BCP. When the thickness of BCP layer was 5 nm, white emission was achieved. We obtained a maximum luminance of $3,500cd/m^2$. The CIE coordinates was (0.375, 0.331). From this study, we could propose that the hybrid structure is efficient in lighting application of white OLED by improvement of color purity.

Slippage on which interface in nanopore filtration?

  • Xiaoxu Huang;Wei Li;Yongbin Zhang
    • Membrane and Water Treatment
    • /
    • v.15 no.1
    • /
    • pp.31-39
    • /
    • 2024
  • The flow in a nanopore of filtration membrane is often multiscale and consists of both the adsorbed layer flow and the intermediate continuum fluid flow. There is a controversy on which interface the slippage should occur in the nanopore filtration: On the adsorbed layer-pore wall interface or on the adsorbed layer-continuum fluid interface? What is the difference between these two slippage effects? We address these subjects in the present study by using the multiscale flow equations incorporating the slippage on different interfaces. Based on the limiting shear strength model for the slippage, it was found from the calculation results that for the hydrophobic pore wall the slippage surely occurs on the adsorbed layer-pore wall interface, however for the hydrophilic pore wall, the slippage can occur on either of the two interfaces, dependent on the competition between the interfacial shear strength on the adsorbed layer-pore wall interface and that on the adsorbed layer-continuum fluid interface. Since the slippage on the adsorbed layer-pore wall interface can be designed while that on the adsorbed layer-continuum fluid interface can not, the former slippage can result in the flux through the nanopore much higher than the latter slippage by designing a highly hydrophobic pore wall surface. The obtained results are of significant interest to the design and application of the interfacial slippage in nanoporous filtration membranes for both improving the flux and conserving the energy cost.

Effect of the additional application of a resin layer on dentin bonding using single-step adhesives (중간층 레진 적용이 단일 접착과정 상아질 접착제의 접착에 미치는 영향)

  • Choi, Seung-Mo;Park, Sang-Hyuk;Choi, Kyung-Kyu;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.4
    • /
    • pp.313-326
    • /
    • 2007
  • The purpose of this study was to prove that an intermediate resin layer (IRL) oan increase the bond strength to dentin by reducing the permeability of single-step adhesives. Flat dentin surfaces were created on buccal and lingual side of freshly extracted third molar using a low-speed diamond saw under copious water flow. Approximately 2.0 mm thick axially sectioned dentin slice was abraded with wet #600 SiC paper. Three single-step self-etch adhesives; Adper Prompt L-Pop (3M ESPE, St Paul, MN, USA), One-Up Bond F (Tokuyama Corp, Tokyo, Japan) and Xeno III (Dentsply, Konstanz, Germany) were used in this study. Each adhesive groups were again subdivided into ten groups by; whether IRL was used or not; whether adhesives were cured with light before application or IRL or not; the mode of composite application. The results of this study were as follows; 1. Bond strength of single-step adhesives increased by an additional coating of intermediate resin layer, and this increasement was statistically signigicant when self-cured composite was used (p < 0.001). 2. When using IRL, there were no difference on bond strengths regardless the curing procedure of single-step adhesives. 3. There were no significant difference on bond strengths between usage of AB2 or SM as an IRL. 4. The thickness of Hybrid layer was correlated with the acidity of adhesive used, and the nanoleakage represented by silver deposits and grains was examined within hybrid and adhesive layer in most of single-step adhesives. 5. Neither thickness of hybrid layer nor nanoleakage were related to bond strength.

Performance and Stability Evaluation of Muscle Activation (EMG) Measurement Electrodes According to Layer Design (근활성도(EMG) 측정 전극 레이어 설계에 따른 성능 및 안정성 평가)

  • Bon-Hak Koo;Dong-Hee Lee;Joo-Yong Kim
    • Science of Emotion and Sensibility
    • /
    • v.26 no.4
    • /
    • pp.41-50
    • /
    • 2023
  • This study aims to develop electromyography (EMG) textile electrodes and assess their performance and signal stability by examining variations in layer count and fabric types. We fabricated the electrodes through layering and pressing techniques, focusing on configurations with different layer counts (Layer-0, Layer-1, and Layer-2). Our findings indicate that layer presence significantly influences muscle activation measurements, with enhanced performance correlated with increased layer numbers. Subsequently, we created electrodes from five distinct fabrics (neoprene, spandex cushion, 100% polyester, nylon spandex, and cotton canvas), each maintaining a Layer-2 structure. In performance tests, nylon spandex fabric, particularly heavier variants, outperformed others, while the spandex cushion electrodes showed superior stability in muscle activation signal acquisition. This research elucidates the connection between electrode performance and factors like layer number and electrode-skin contact area. It suggests a novel approach to electrode design, focusing on layer properties and targeted pressure application on specific sensor areas, rather than uniformly increasing sleeve pressure.