• Title/Summary/Keyword: apple diseases

Search Result 80, Processing Time 0.028 seconds

Survey on the Occurrence of Apple Diseases in Korea from 1992 to 2000

  • Lee, Dong-Hyuk;Lee, Soon-Won;Choi, Kyung-Hee;Kim, Dong-A;Uhm, Jae-Youl
    • The Plant Pathology Journal
    • /
    • v.22 no.4
    • /
    • pp.375-380
    • /
    • 2006
  • In the survey from 1992 to 2000, twenty-eight parasitic diseases were observed in major apple producing areas in Korea. The predominant apple diseases were white rot(Botryosphaeria dothidea), Marssonina blotch(Marssonina mali), Valsa canker(Valsa ceratosperma), Alternaria leaf spot(Alternaria mali), and bitter rot(Collectotrichum gloeosporioides and C. acutatum). Apple scab that reappeared in 1990 after disappearance for 15 years was disappeared again since 1997. A viroid disease(caused by apple scar skin viroid) was newly found in this survey. The five diseases, fire blight(Erwinia amylovora), black rot(Botryosphaeria obtusa), scab(Cladosporium carpophilum), Monochaetia twig blight(Monochaetia sp.), and brown leaf spot(Hendersonia mali), which had once described in 1928 but no further reports on their occurrence, were not found in this survey. However, blossom blight(Monilinia mali), brown rot(Monilinia fructigena), and pink rot(Trichothecium roseum), which did not occur on apple after mid 1970s, were found in this survey.

Classification of Apple Tree Leaves Diseases using Deep Learning Methods

  • Alsayed, Ashwaq;Alsabei, Amani;Arif, Muhammad
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.7
    • /
    • pp.324-330
    • /
    • 2021
  • Agriculture is one of the essential needs of human life on planet Earth. It is the source of food and earnings for many individuals around the world. The economy of many countries is associated with the agriculture sector. Lots of diseases exist that attack various fruits and crops. Apple Tree Leaves also suffer different types of pathological conditions that affect their production. These pathological conditions include apple scab, cedar apple rust, or multiple diseases, etc. In this paper, an automatic detection framework based on deep learning is investigated for apple leaves disease classification. Different pre-trained models, VGG16, ResNetV2, InceptionV3, and MobileNetV2, are considered for transfer learning. A combination of parameters like learning rate, batch size, and optimizer is analyzed, and the best combination of ResNetV2 with Adam optimizer provided the best classification accuracy of 94%.

Isolation and Identification of Antagonistic Microorganisms for Biological Control to Major Diseases of Apple Tree(Malus domestica Borkh) (사과 주요 병해 방제를 위한 길항미생물 분리 및 동정)

  • 박흥섭;조정일
    • Korean Journal of Organic Agriculture
    • /
    • v.5 no.1
    • /
    • pp.137-147
    • /
    • 1996
  • For the purpose of acquiring microbial agents that can be utilized to biologically control the major airborne diseases to apple trees, such as canker(Botryosphaeria dothidea), bitter rot(Glomerella cingulata), alternaria leaf spot(Alternaria mali), root rot(rosellinia necatrix), canker(Valsa ceratosperma) and gray mold rot(Botrytis cinerea), the effective microorgaisms were isolated, tested for antagonistic activity to the pathogens causing major diseases to apple trees and identifed. Screening of more than 5,000 species of microorganisms collected in nature for them antagonistic action to the pathogens causing 5 major diseases to apple trees resulted in selection of effective species. Out of the 11 species, one species designated as CAP134 demonstrated outstanding activity. The bacterial strain, CAP134 exerted antagonistic efficiency of 57% on an isolated strain and 40% on a donated strain of Botryosphaeria dothidea., 52% on an isolated strain and 46% on a purchased strain of Alternaria mali, 60% on Valsa ceratosperma 25% on Glomerella cingulata, and 64% Rosellinia necatrix. The CAP134 was identified as a bacterial strain to Bacillus subtilis ATCC 6633 based on morephology, culture conditions, and physio-biochemical characteristics.

  • PDF

Improved Deep Residual Network for Apple Leaf Disease Identification

  • Zhou, Changjian;Xing, Jinge
    • Journal of Information Processing Systems
    • /
    • v.17 no.6
    • /
    • pp.1115-1126
    • /
    • 2021
  • Plant disease is one of the most irritating problems for agriculture growers. Thus, timely detection of plant diseases is of high importance to practical value, and corresponding measures can be taken at the early stage of plant diseases. Therefore, numerous researchers have made unremitting efforts in plant disease identification. However, this problem was not solved effectively until the development of artificial intelligence and big data technologies, especially the wide application of deep learning models in different fields. Since the symptoms of plant diseases mainly appear visually on leaves, computer vision and machine learning technologies are effective and rapid methods for identifying various kinds of plant diseases. As one of the fruits with the highest nutritional value, apple production directly affects the quality of life, and it is important to prevent disease intrusion in advance for yield and taste. In this study, an improved deep residual network is proposed for apple leaf disease identification in a novel way, a global residual connection is added to the original residual network, and the local residual connection architecture is optimized. Including that 1,977 apple leaf disease images with three categories that are collected in this study, experimental results show that the proposed method has achieved 98.74% top-1 accuracy on the test set, outperforming the existing state-of-the-art models in apple leaf disease identification tasks, and proving the effectiveness of the proposed method.

Occurrence and control of postharvest diseases of apple (사과저장병의 발생 및 방제)

  • Kim, Yong-Ki;Kim, Ryung-Hee;Ryu, Jae-Dang;Ryu, Jae-Gee;Lee, Sang-Yup;Choi, Yong-Chul
    • The Korean Journal of Pesticide Science
    • /
    • v.2 no.2
    • /
    • pp.83-89
    • /
    • 1998
  • The occurrence of postharvest disease of apple was surveyed from 1995 to 1997 in the major apple-producing area in Korea. Ten genera including Alternaria spp., Botryosphaeria dothidea, Botrytis cinerea, Fusarium spp., and Penicillium spp. were isolated from the decayed apple fruits. Of these, B. cinerea, Penicillium spp. and Fusarium spp. were frequently isolated and were highly pathogenic to apple fruits. Optimum temperature of mycelial growth for Penicillium spp. ranged from 10 to $30^{\circ}C$ and that of mycelial growth for B. cinerea and Alternaria spp. ranged from 5 to $30^{\circ}C$. Optimum temperature of sporulation of Penicillium spp. and Alternaria spp. ranged $15{\sim}25^{\circ}C$ and $10{\sim}20^{\circ}C$, respectively. Occurrence of postharvest disease of apple increased in neglecting selection of wounded fruits before storing apples. Most of these fungi causing postharvest diseases such as Penicillium spp, Botrytis cinerea and Alternaria spp. were isolated from healthy fruits sampled at apple orchard. These results suggested that posthavest diseases of apple were originated from apple fruits contaminated from apple orchard and occurred during storage. In addition, five fungicides including prochloraz EC, fenari EC, captan WP, benomyl WP and folpet WP suppressed posthavest diseases when they sprayed on apple fruits at 30 days before harvesting.

  • PDF

Dieback Reality of Apple Trees Resulting from Soil-Borne Fungal Pathogens in South Korea from 2016 to 2019

  • Lee, Sung-Hee;Shin, Hyunman;Chang, Who-Bong;Ryu, Kyoung-Yul;Kim, Heung Tae;Cha, Byeongjin;Cha, Jae-Soon
    • Research in Plant Disease
    • /
    • v.26 no.2
    • /
    • pp.88-94
    • /
    • 2020
  • Recently, the severe dieback of apple trees resulting from soil-borne diseases has occurred in South Korea. The casual agents of dieback were surveyed on 74 apple orchards that had been damaged nationwide in 2016-2019. The number of apple orchards affected alone by Phytophthora rot, violet root rot, and white root rot was 31, 34, and 3, respectively. Also, the total number of mixed infection orchards was 6. Out of 9,112 apple trees affected by dieback, the trees damaged by Phytophthora rot, violet root rot, and white root rot were 3,332, 3,831, and 44, respectively. Moreover, the total number of mixed infection apple trees was 1,905. The provinces mainly affected were Gyeongnam, Gyeongbuk, Chungbuk, and Jeonbuk. The survey on these infected apple orchards will be available to form management strategy for the dieback that had been increased by soil-borne fungal pathogens.

Survey of Major Leaf Disease Occurred on Apple Tree in Korea from 1992-2010 (1992-2010년도 사과나무 잎에 발생하는 주요 병해 발생조사)

  • Cheon, Wonsu;Do, Yun-Su;Lee, Sun-Young;Choi, Kyung-Hee;Nam, Jong-Chul;Kim, Se Jin;Lee, Dong-Hyuk
    • Research in Plant Disease
    • /
    • v.24 no.4
    • /
    • pp.249-256
    • /
    • 2018
  • Disease occurrence in apple cultivars on 13-30 apple orchards from April to October 1992-2010 was investigated at 30 days intervals in Gyeongbuk, Gyeongnam and Jeonbuk provinces of Korea. Apple cultivar 'Fuji' was found most susceptible and is being damaged by cedar apple rust, scab, gray mold, Alternaria blotch and Marssonia blotch as major leaf diseases that were observed. The percentage of occurrence of these leaf diseases varies from every year. This variation is based on different rainfall and temperature conditions, cultivation, root stock and changed system of fungicide spray during the particular year and season.

Evidence of Greater Competitive Fitness of Erwinia amylovora over E. pyrifoliae in Korean Isolates

  • Choi, Jeong Ho;Kim, Jong-Yea;Park, Duck Hwan
    • The Plant Pathology Journal
    • /
    • v.38 no.4
    • /
    • pp.355-365
    • /
    • 2022
  • Erwinia amylovora and E. pyrifoliae are the causative agents of destructive diseases in both apple and pear trees viz. fire blight and black shoot blight, respectively. Since the introduction of fire blight in Korea in 2015, the occurrence of both pathogens has been independently reported. The co-incidence of these diseases is highly probable given the co-existence of their pathogenic bacteria in the same trees or orchards in a city/district. Hence, this study evaluated whether both diseases occurred in neighboring orchards and whether they occurred together in a single orchard. The competition and virulence of the two pathogens was compared using growth rates in vitro and in planta. Importantly, E amylovora showed significantly higher colony numbers than E. pyrifoliae when they were co-cultured in liquid media and co-inoculated into immature apple fruits and seedlings. In a comparison of the usage of major carbon sources, which are abundant in immature apple fruits and seedlings, E. amylovora also showed better growth rates than E. pyrifoliae. In virulence assays, including motility and a hypersensitive response (HR), E. amylovora demonstrated a larger diameter of travel from the inoculation site than E. pyrifoliae in both swarming and swimming motilities. E. amylovora elicited a HR in tobacco leaves when diluted from 1:1 to 1:16 but E. pyrifoliae does not elicit a HR when diluted at 1:16. Therefore, E. amylovora was concluded to have a greater competitive fitness than E. pyrifoliae.

Changes in periodontal pathogens and chronic disease indicators through adjunctive probiotic supplementation : a case report (보조적 프로바이오틱스 복용을 통한 치주 병원성 세균 및 전신질환 지표 변화: 증례보고)

  • Mu-Yeol Cho;In-Seong Hwang;Young-Yeon Kim;Hye-Sung Kim
    • Journal of Korean society of Dental Hygiene
    • /
    • v.24 no.2
    • /
    • pp.91-98
    • /
    • 2024
  • Objectives: This case study aimed to evaluate changes in periodontal pathogens and systemic disease indicators following the adjunctive use of probiotics for periodontal treatment. Methods: Two adults, a 64-year-old male and 71-year-old female, were selected with ethical approval and underwent comprehensive oral and systemic health assessments before and after probiotic intake with periodontal debridement. Results: There was a significant reduction in the periodontal pathogens, particularly Porphyromonas gingivalis and Treponema forsythia, and no adverse systemic indicators were observed. Moreover, a trend toward improved lipid profiles was noted, suggesting a potential positive impact on systemic health. Conclusions: This study shows the potential role of probiotics in enhancing oral health and preventing systemic diseases, thus highlighting the need for further research and clinical trials.

Development of Fungicide Spray Program for the Apples to Be Exported to the United States of America (미국 수출용 사과 재배를 위한 살균제 살포력의 개발)

  • 엄재열;이동혁;이상계
    • Korean Journal Plant Pathology
    • /
    • v.11 no.1
    • /
    • pp.17-29
    • /
    • 1995
  • This study was conducted from 1991 to 1993 to develop a fungicidal spray program for the apples exportable to the United States of America, in which quarantine and pesticide residue in agricultural products are strictly regulated. In 1991, 2 spray schedules were applied to an orchard, in one of which the 7 fungicides registered for apple both in Korea and U.S. were used, and in the other of which the Bordeaux mixture for which the tolerance was exempted in U.S. was used 2 times along with those 7 fungicides. The apple white rot and fruit infection by Alternaria mali were not effectively controlled by the 7 fungicides alone; however, the control efficacy was raised by adding the Bordeaux mixture to the spray schedule. In 1992, 4 spray schedules were applied in which the kinds of fungicides and spray intervals were different one another. The results suggested that an effective spray program can be developed by adopting the Bordeaux mixture for 3 times or adopting the imminoctadine-triacetate which has not tolerance level in U.S. for same times in the vulnerable stage of apple white rot and alternaria blotch. In spite of the high efficacies against major apple diseases, the Bordeaux mixture could not be recommended to the apple growers due to the various defects such as restrictions in compatibility with insecticides and acaricides, troublesomeness in preparation and spray, especially the harmful effect on the finish of Fuji apples. In 1993, a spray program adopting 3 times of imminoctadine-triacetate during the growing season of apple was developed, which not only can effectively control the major apple diseases but also avoid the pesticide residue problems if it was sprayed 2 or 3 times after bagging. On the basis of the 3 years results, a basic fungicide spray program was formulated in which 1~3 times of imminoctadine-triacetate and 1~2 times of bitertanol were adopted in addition of the 7 common fungicides registered in both countries. In the results of application of the spray schedule to the actual farming in the 4 areas of Kyungpook Province in 1994, no noticeable defects were detected at the first year trial. However, this spray program will be continuously evaluated and modified to obtain better control efficacies against major apple diseases.

  • PDF