• 제목/요약/키워드: apple disease

검색결과 204건 처리시간 0.027초

Dynamics of Bacterial Communities by Apple Tissue: Implications for Apple Health

  • Hwa-Jung Lee;Su-Hyeon Kim;Da-Ran Kim;Gyeongjun Cho;Youn-Sig Kwak
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권9호
    • /
    • pp.1141-1148
    • /
    • 2023
  • Herein, we explored the potential of the apple's core microbiota for biological control of Erwinia amylovora, which causes fire blight disease, and analyzed the structure of the apple's bacterial community across different tissues and seasons. Network analysis results showed distinct differences in bacterial community composition between the endosphere and rhizosphere of healthy apples, and eight taxa were identified as negatively correlated with E. amylovora, indicating their potential key role in a new control strategy against the pathogen. This study highlights the critical role of the apple's bacterial community in disease control and provides a new direction for future research in apple production. In addition, the findings suggest that using the composition of the apple's core taxa as a biological control strategy could be an effective alternative to traditional chemical control methods, which have been proven futile and environmentally harmful.

State of Knowledge of Apple Marssonina Blotch (AMB) Disease among Gunwi Farmers

  • Posadas, Brianna B.;Lee, Won Suk;Galindo-Gonzalez, Sebastian;Hong, Youngki;Kim, Sangcheol
    • Journal of Biosystems Engineering
    • /
    • 제41권3호
    • /
    • pp.255-262
    • /
    • 2016
  • Purpose: Fuji apples are one of the top selling exports for South Korea bringing in over $233.4 million in 2013. However, during the last few decades, about half of the Fuji apple orchards have been infected by Apple Marssonina Blotch disease (AMB), a fungal disease caused by Diplocarpon mali., which takes about 40 days to exhibit obvious visible symptoms. Infected leaves turn yellow and begin growing brown lesions. AMB promotes early defoliation and reduces the quality and quantity of apples an infected tree can produce. Currently, there is no prediction model for AMB on the market. Methods: The Precision Agriculture Laboratory (PAL) at the University of Florida (UF) has been working with the National Academy of Agricultural Science, Rural Development Administration, South Korea to investigate the use of hyperspectral data in creating an early detection method for AMB. The RDA has been researching hyperspectral techniques for disease detection at their Apple Research Station in Gunwi since 2012 and disseminates its findings to the local farmers. These farmers were surveyed to assess the state of knowledge of AMB in the area. Out of a population of about 750 growers, 111 surveys were completed (confidence interval of +/- 8.59%, confidence level of 95%, p-value of 0.05). Results: The survey revealed 32% of the farmers did not know what AMB was, but 45% of farmers have had their orchards infected by AMB. Twenty-five percent could not distinguish AMB from other symptoms. Overwhelmingly, 80% of farmers strongly believed an early detection method for AMB was necessary. Conclusions: The results of the survey will help to evaluate the outreach programs of the RDA so they can more effectively educate farmers on the identifying, treating, and mediating AMB.

사과저장병의 발생 및 방제 (Occurrence and control of postharvest diseases of apple)

  • 김용기;김령희;류재당;류재기;이상엽;최용철
    • 농약과학회지
    • /
    • 제2권2호
    • /
    • pp.83-89
    • /
    • 1998
  • 사과 주산단지로부터 1995년부터 1997년까지 3개년에 걸쳐 저장시 부패를 일으키는 병 피해를 조사하고 분리된 병원균의 병원성을 검정한 결과, Alternaria spp., Botryosphaeria dothidea, Botrytis cinerea, Fusarium spp., and Penicillium spp. 등 10종의 진균이 분리되었으며, 그 중 Botrytis cinerea, Penicillium spp. 및 Fusarium은 분리빈도도 높았고 병원성도 높았다. 균사생장에 있어서 Penicillium spp.은 $10{\sim}30^{\circ}C$에서, Botrytis cinerea 및 Alternaria spp.는 $5{\sim}30^{\circ}C$의 범위에서 잘 되었다. Penicillium spp.와 Alternaria spp.는 pH와 관련없이 생장하는 것으로 나타났고 Botrytis cinerea는 pH가 증가함에 따라 생장이 감소되었다. 포자 형성에 있어서는 Penicillium spp.는 $15{\sim}25^{\circ}C$, Botrytis cinerea는 $10{\sim}20^{\circ}C$에서 양호하였다. 사과선과가 저장병 발생에 미치는 영향을 조사한 결과 선과를 소홀히 할 경우 피해가 큰 것으로 나타났다. 생육기중 건전과일을 채취하여 과피서식미생물을 조사한 결과 저장병에 관여하는 대부분의 진균이 분리된 점으로 보아 저장병균은 포장에서 오염되어 저장기간 중에 병을 일으키는 것으로 판명되었다. 사과저장병해를 줄이기 위하여 프로라츠 유제등 사과병해방제용 약제를 수확전 30일에 살포한 결과 저장병 피해를 현저히 줄일 수 있었다.

  • PDF

Ectopic Expression of Apple MbR7 Gene Induced Enhanced Resistance to Transgenic Arabidopsis Plant Against a Virulent Pathogen

  • Lee, Soo-Yeon;Choi, Yeon-Ju;Ha, Young-Mie;Lee, Dong-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권1호
    • /
    • pp.130-137
    • /
    • 2007
  • A disease resistance related gene, MbR7, was identified in the wild apple species, Malus baccata. The MbR7 gene has a single open reading frame (ORF) of 3,288 nucleotides potentially encoding a 1,095-amino acid protein. Its deduced amino acid sequence resembles the N protein of tobacco and the NL27 gene of potato and has several motifs characteristic of a TIR-NBS-LRR R gene subclass. Ectopic expression of MbR7 in Arabidopsis enhanced the resistance against a virulent pathogen, Pseudomonas syringae pv. tomato DC3000. Microarray analysis confirmed the induction of defense-related gene expression in 35S::MbR7 heterologous Arabidopsis plants, indicating that the MbR7 gene likely activates a downstream resistance pathway without interaction with pathogens. Our results suggest that MbR7 can be a potential target gene in developing a new disease-resistant apple variety.

사과나무를 가해하는 한국산 갈색무늬병균의 생물학적 특성 (Biological Characterization of Marssonina coronaria Infecting Apple Trees in Korea)

  • 백창기;정희영
    • 한국균학회지
    • /
    • 제42권3호
    • /
    • pp.183-190
    • /
    • 2014
  • 사과 갈색무늬병은 최근 우리나라 사과 과수원에 심각한 경제적 피해를 입히는 질병이다. 본 총설에서는 우리나라에서의 사과 갈색무늬병 연구역사와 갈색무늬병의 발생생태, 병원균의 생활환, 그들의 형태학적, 배양학적, 유전학적 특징 및 분리배양 기법에 대해 종합적으로 기술하였다. 또한, 후지 품종에 빈번히 발생하는 원인미상의 갈색무늬병 유사증상에 대한 특징도 상술하였다.

First Report of Apple Decline Caused by Botryosphaeria sinensis in Korea

  • Lee, Seung-Yeol;Ten, Leonid N.;Back, Chang-Gi;Jung, Hee-Young
    • 한국균학회지
    • /
    • 제49권3호
    • /
    • pp.417-423
    • /
    • 2021
  • Apple decline symptoms were frequently observed on cv. Fuji apple orchards located in Gyeonggi, Gyeongbuk, and Gangwon provinces during surveys conducted from May until the end of September 2020. Three fungal strains were isolated from the margins of internal lesions of diseased apple trees, and their morphological characteristics were considered similar to Botryosphaeria sinensis. Phylogenetic analysis using internal transcribed spacer (ITS) regions, translation elongation factor 1-alpha (tef1), beta-tubulin (tub2), and the second largest subunit of RNA polymerase II (rpb2) gene sequences confirmed the closest relationship of isolates with B. sinensis at the species level. According to a pathogenicity test, the appearance of dark-brown discolorations and vascular necrosis on apple branches inoculated with the isolated strain KNUF-20-014 was observed. To the best of our knowledge, this is the first report of B. sinensis as the causal agent of apple disease in Korea.

사과나무에서 가지검은마름병 억제를 위한 효율적 가지치기 (Controlling by Effective Pruning of Twigs Showing Black Shoot Blight Disease Symptoms in Apple Trees)

  • 한규석;유지강;이한별;오창식;예미지;이종호;박덕환
    • 식물병연구
    • /
    • 제22권4호
    • /
    • pp.269-275
    • /
    • 2016
  • E. pyrifoliae에 의한 과수 가지검은마름병은 국내에서 1995년 최초 발생이래 2016년까지 꾸준히 발생하여 과수농가에 피해를 주고 있는 세균병해이다. 가지검은마름병 발생 농가의 폐원조치 및 공적방제로 인한 경제적 피해 감소를 위하여, 병징이 관찰되는 이병조직 및 건전조직 내의 병원 세균을 검출하여 효율적 관리방안을 마련하고자 본 연구를 수행하였다. 가지검은마름병원세균의 검출은 genomic DNA 추출과정을 생략한 순수 균총만을 이용하는 colony-PCR을 이용하였으며, 이를 위해 ERIC 지역에서 제작된 가지검은마름병원세균 특이 프라이머 EpSPF/EpSPR 프라이머쌍을 선발하였다. 특이 프라이머를 활용한 colony-PCR 방법으로 2014-2015년 4-10월까지 사과나무 생육기간 동안 가지검은마름병 발생상황을 모니터링한 결과, $25^{\circ}C$ 일 평균 온도 기간인 5월 중순부터 7월 초순까지 발병이 가장 빈번하였다. 발병가지 내 병원세균의 존재유무 검정 결과 병징 부위와 이로부터 20 cm 내 건전조직에서만 병원세균이 지속적으로 검출되었다. 따라서 이미 발생한 가지검은마름병을 효율적으로 관리하기 위해 이병조직과 건전조직 경계 부위로부터 20 cm 이상에서 가지치기를 하는 것이 매우 적절할 것으로 판단된다.

근적외선 영상을 이용한 후지사과의 결점 검출에 관한 연구 (I) -결점의 광학적 특성 구명 및 유의파장 선정- (Defect Detection of ‘Fuji’ Apple using NIR Imaging(I) -Optical characteristics of defects and selection of significant wavelelength-)

  • 이수희;노상하
    • Journal of Biosystems Engineering
    • /
    • 제26권2호
    • /
    • pp.169-176
    • /
    • 2001
  • Defect of apple was depreciated the product value and causes storage disease seriously. To detect the defect of ‘Fuji’apple with machine vision system, the optical characteristics of defect should be investigated. In this research, absorbance spectra of defect were acquired by spectrophotometer in the range of visible and NIR region(400∼1,100nm) and L*a*b* color values were also acquired by colorimeter. NIR machine vision system was constructed with B&W camera, frame grabber, 16 tungsten-halogen lamps, variable focal length lens and NIR bandpass filter which was mounted to lens outward. Average gray values of defect at 15 NIR wavelength were acquired and the significant NIR wavelength was selected by comparing Mahalanobis distance between sound and defective apple. As the result of Mahalanobis distance analysis, the significant wavelength to discriminate the defectives in ‘Fuji’apple were found to be 720nm for scab and 970nm for bruise and cuts and 920nm was also effective regardless of defective types.

  • PDF

Classification of Apple Tree Leaves Diseases using Deep Learning Methods

  • Alsayed, Ashwaq;Alsabei, Amani;Arif, Muhammad
    • International Journal of Computer Science & Network Security
    • /
    • 제21권7호
    • /
    • pp.324-330
    • /
    • 2021
  • Agriculture is one of the essential needs of human life on planet Earth. It is the source of food and earnings for many individuals around the world. The economy of many countries is associated with the agriculture sector. Lots of diseases exist that attack various fruits and crops. Apple Tree Leaves also suffer different types of pathological conditions that affect their production. These pathological conditions include apple scab, cedar apple rust, or multiple diseases, etc. In this paper, an automatic detection framework based on deep learning is investigated for apple leaves disease classification. Different pre-trained models, VGG16, ResNetV2, InceptionV3, and MobileNetV2, are considered for transfer learning. A combination of parameters like learning rate, batch size, and optimizer is analyzed, and the best combination of ResNetV2 with Adam optimizer provided the best classification accuracy of 94%.

Detection of Apple Scar Skin Viroid by Reverse Transcription Recombinase Polymerase Amplification Assay

  • Kim, Na-Kyeong;Lee, Hyo-Jeong;Ryu, Tae-Ho;Cho, In-Sook;Ju, Ho-Jong;Jeong, Rae-Dong
    • 식물병연구
    • /
    • 제27권2호
    • /
    • pp.79-83
    • /
    • 2021
  • The aim of the present study was to develop a sensitive and specific detection method for the rapid detection of apple scar skin viroid (ASSVd) in apple leaves. The resulting reverse transcription recombinase polymerase amplification (RT-RPA) assay can be completed in 10 min at 42℃, is 10 times more sensitive than conventional reverse transcription polymerase chain reaction, and can specifically amplify ASSVd without any cross-reactivity with other common apple viruses, including apple stem grooving virus, apple stem pitting virus, and apple chlorotic leaf spot virus. The reliability of the RT-RPA assay was assessed, and the findings suggested that it can be successfully utilized to detect ASSVd in field-collected samples. The RT-RPA assay developed in the present study provides a potentially valuable means for improving the detection of ASSVd in viroid-free certification programs, especially in resource-limited conditions.