• 제목/요약/키워드: apple disease

검색결과 204건 처리시간 0.03초

Occurrence of black shoot blight in apple and pear trees in Korea

  • Mi-Hyun Lee;Yong Hwan Lee;Seong Chan Lee;Hyo-Won Choi;Mi-Suk Yang;Jae Sun Moon;Suk-Yoon Kwon;Jun Myoung Yu
    • 농업과학연구
    • /
    • 제50권4호
    • /
    • pp.723-734
    • /
    • 2023
  • Erwinia pyrifoliae, which causes black shoot blight in apple and pear trees, was first identified in Korea in 1995. Extensive measures are typically used to control the disease by eradicating trees in diagnosed orchards, owing to the detrimental impact of the disease on apple and pear production. However, despite governmental efforts, the disease has continuously spread. In this study, we analyzed the current status of the black shoot blight occurrence in apple and pear orchards between 1995 to 2022. Our findings reveal that over the past 28 years, black shoot blight has occurred in 26 cities and districts across five Korean provinces. The affected regions are predominantly concentrated in the northern part of Korea, including the Gangwon and Gyeonggi provinces. Furthermore, black shoot blight has gradually expanded to the northern provincial regions of Chungbuk, Chungnam, and Gyeongbuk, which are centrally situated in Korea. Furthermore, the occurrence pattern of black shoot blight differed between apple and pear orchards; in apple orchards, black shoot blight occurred consistently each year, with a sudden increase in cases in 2020; however, in pear orchards, it has considerably decreased since 2007. To the best of our knowledge, this is the first comprehensive report on the occurrence of black shoot blight in apple and pear trees in 28 years, and the results will provide valuable insights for future disease management strategies.

Analysis of Endophytic Bacterial Communities and Investigation of Core Taxa in Apple Trees

  • Yejin Lee;Gyeongjun Cho;Da-Ran Kim;Youn-Sig Kwak
    • The Plant Pathology Journal
    • /
    • 제39권4호
    • /
    • pp.397-408
    • /
    • 2023
  • Fire blight disease, caused by Erwinia amylovora, is a devastating affliction in apple cultivation worldwide. Chemical pesticides have exhibited limited effectiveness in controlling the disease, and biological control options for treating fruit trees are limited. Therefore, a relatively large-scale survey is necessary to develop microbial agents for apple trees. Here we collected healthy apple trees from across the country to identify common and core bacterial taxa. We analyzed the endophytic bacterial communities in leaves and twigs and discovered that the twig bacterial communities were more conserved than those in the leaves, regardless of the origin of the sample. This finding indicates that specific endophytic taxa are consistently present in healthy apple trees and may be involved in vital functions such as disease prevention and growth. Furthermore, we compared the community metabolite pathway expression rates of these endophyte communities with those of E. amylovora infected apple trees and discovered that the endophyte communities in healthy apple trees not only had similar community structures but also similar metabolite pathway expression rates. Additionally, Pseudomonas and Methylobacterium-Methylorobrum were the dominant taxa in all healthy apple trees. Our findings provide valuable insights into the potential roles of endophytes in healthy apple trees and inform the development of strategies for enhancing apple growth and resilience. Moreover, the similarity in cluster structure and pathway analysis between healthy orchards was mutually reinforcing, demonstrating the power of microbiome analysis as a tool for identifying factors that contribute to plant health.

과수화상병 저항성 사과대목의 MR5보유 대목별 비교 (Comparison of the Apple Rootstock Cultivar with the MR5 Resistance Traits of Fire Blight Resistance)

  • 권영희;최원일;김희규;김경옥;김주형
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2020년도 추계국제학술대회
    • /
    • pp.48-48
    • /
    • 2020
  • Fire blight, caused by Erwinia amylovora(Burrill), is a destructive disease of apple that damages blossoms, shoots, and woody plant organs. The fire blight disease is a worldwide problem for pome fruit growers because all popular apple cultivars are susceptible to the disease. Recently, fire blight of apple rootstocks has become a serious economic problem in high-density orchard systems in korea. The most commonly used dwarfing root stocks, M.9 and M.26, are highly susceptible to E. amylovora. The objective of the apple rootstock-breeding program has been to develop pomologically excellent rootstocks with resistance to abiotic and biotic stresses, including fire blight. Budagovsky 9 (B.9) apple rootstock is reported to be highly susceptible when inoculated with E. amylovora, although results from multiple trials showed that B.9 is resistant to rootstock blight infection in field plantings. So we tried to collect the apple rootstocks traits of fire blight resistance. The apple genotype Malus Robusta 5 (MR5) represents an ideal donor for fire blight resistance because it was described as resistant to all currently known European strains of the pathogen. The PCR for detecting the MR5 gene using the primers Md_MR5_FL_F/Md_MR5_FL_R. The results of these experiments confirmed some apple rootstocks traits of fire blight resistance showed the MR5. Furthermore, this gene is confirmed to be the resistance determinant of Mr5 as the transformed lines undergo the same gene-for-gene interaction in the host-pathogen relationship MR5-E. amylovora.

  • PDF

First Report of Two Colletotrichum Species Associated with Bitter Rot on Apple Fruit in Korea - C. fructicola and C. siamense

  • Park, Myung Soo;Kim, Byung-Ryun;Park, In-Hee;Hahm, Soo-Sang
    • Mycobiology
    • /
    • 제46권2호
    • /
    • pp.154-158
    • /
    • 2018
  • Bitter rot caused by the fungal genus Colletotrichum is a well-known, common disease of apple and causes significant yield loss. In 2013, six fungal strains were isolated from Fuji apple fruits exhibiting symptoms of bitter rot from Andong, Korea. These strains were identified as Colletotrichum fructicola and C. siamense based on morphological characteristics and multilocus sequence analysis of the internal transcribed spacer rDNA, actin, calmodulin, chitin synthase, and glyceraldehyde-3-phosphate dehydrogenase Pathogenicity tests confirmed the involvement of C. fructicola and C. siamense in the development of disease symptoms on apple fruits. This is the first report of C. fructicola and C. siamense causing bitter rot on apple fruit in Korea.

사과흰날개무늬병균의 Cytochalasin E 독소 생산과 병원성 (Cytochalasin E Production by Rosellinia necatrix and Its Pathogenicity on Apple)

  • 이동혁;최경희;엄재열
    • 식물병연구
    • /
    • 제15권1호
    • /
    • pp.46-50
    • /
    • 2009
  • Cytochalasin E (CE) is a secondary metabolite secreted by Rosellinia necatrix, caused by white root rot, and has toxicity to apple as a toxin during disease progress. This study was conducted to demonstrate the relationship between the production of CE and its pathogenicity. CE producing isolates and non-producing isolates of R. nectatrix were isolated from the mycerial mat of diseased roots and was detected on that using a TLC and HPLC analysis and in vivo pathogenicity test. CE non-producing isolates were not pathogenic to apple roots and not detected CE by TLC and HPLC analysis. It was shown that the production of CE was related to the pathogenicity of R. nectatrix.

Identification of Differentially Up-regulated Genes in Apple with White Rot Disease

  • Kang, Yeo-Jin;Lee, Young Koung;Kim, In-Jung
    • The Plant Pathology Journal
    • /
    • 제35권5호
    • /
    • pp.530-537
    • /
    • 2019
  • Fuji, a major apple cultivar in Korea, is susceptible to white rot. Apple white rot disease appears on the stem and fruit; the development of which deteriorates fruit quality, resulting in decreases in farmers' income. Thus, it is necessary to characterize molecular markers related to apple white rot resistance. In this study, we screened for differentially expressed genes between uninfected apple fruits and those infected with Botryosphaeria dothidea, the fungal pathogen that causes white rot. Antimicrobial tests suggest that a gene expression involved in the synthesis of the substance inhibiting the growth of B. dothidea in apples was induced by pathogen infection. We identified seven transcripts induced by the infection. The seven transcripts were homologous to genes encoding a flavonoid glucosyltransferase, a metallothionein-like protein, a senescence-induced protein, a chitinase, a wound-induced protein, and proteins of unknown function. These genes have functions related to responses to environmental stresses, including pathogen infections. Our results can be useful for the development of molecular markers for early detection of the disease or for use in breeding white rotresistant cultivars.

Occurrence and Analysis of Apple Blotch-like Symptoms on Apple Leaves

  • Back, Chang-Gi;Lee, Seung-Yeol;Kang, In-Kyu;Yoon, Tae-Myung;Jung, Hee-Young
    • 원예과학기술지
    • /
    • 제33권3호
    • /
    • pp.429-434
    • /
    • 2015
  • Apple blotch-like symptoms (ABLS) were observed on 'Fuji' apple leaves in Cheongsong, Gunwi and Yeongcheon apple orchards located in Gyeongbuk Province during 2010-2014. Characteristics of ABLS were yellowing, brown spots on leaves, and defoliation, similar to apple blotch diseased (ABD) leaves, which are infected with Marssonina coronaria. It is difficult to differentiate by eye between ABLS and ABD, which has led to misdiagnosis and overuse of fungicides. The present study was conducted to investigate the cause of ABLS using stereomicroscopy, culture isolation, cross-sectional analysis of leaves, and PCR. No acervuli were found on the surface of ABLS leaves and no growth was observed on potato dextrose agar (PDA) plates in culture. Furthermore, cross-sectional analysis revealed similar results, and mycelia were absent in ABLS leaves. By contrast, all these characteristics were present in ABD leaves. Furthermore, no fungi or viruses were detected in ABLS leaves by PCR, suggesting that the disease is not caused by these agents. These findings suggest that ABLS might be a physiological disorder in plants that is distinct from ABD.

Detection and Distribution of Apple scar skin viroid-Korean Strain (ASSVd-K) from Apples Cultivated in Korea

  • Lee, Jai-Youl;Kwon, Mi-Jo;Hwang, Seung-Lark;Lee, Sung-Joon;Lee, Dong-Hyuk
    • The Plant Pathology Journal
    • /
    • 제18권6호
    • /
    • pp.342-344
    • /
    • 2002
  • Apple scar skin viroid (ASSVd) has been one of the most destructive diseases in Korean apple orchards. Symptoms of the scar skin viroid disease were detected in various apple cultivars, namely, Sansa, Fuji, Chukwang, Miki-Life, Hongro, and Songbongeum cultivated in the southern part of Korea. The RNA molecules were extracted from the apples bearing dapple apple symptoms with the application of CF-11 RNA extraction method. The purified RNAs were used for the synthesis of cDNA with RT-PCR. The PCR products were cloned and sequenced. The viroid RNA molecules from the six different cultivars bearing the dapple symptos showed the same nucleotide sequences as that of the Korean strain of ASSVd(ASSVd-K). ASSVd-K was detected from apple orchards in Kunwi, Sangju, Uiseong, Yeong-yang, Andong, and Youngduk in Gyeongbuk Province in 2001, and in Muju in Jeonbuk Province in 2002. As the viroid disease could be propagated vegetatively, it can be widely transmitted gradually in Korea.

Biological Control of Apple Ring Rot on Fruit by Bacillus amyloliquefaciens 9001

  • Li, Yan;Han, Li-Rong;Zhang, Yuanyuan;Fu, Xuechi;Chen, Xinyi;Zhang, Lixia;Mei, Ruhong;Wang, Qi
    • The Plant Pathology Journal
    • /
    • 제29권2호
    • /
    • pp.168-173
    • /
    • 2013
  • Apple ring rot disease, caused by Botryosphaeria dothidea (Moug. ex. Fr) Ces. et de Not., is one of the most important diseases on apple fruits. In this study, strain 9001 isolated from healthy apple fruits from an infested orchard was evaluated for its biocontrol activity against apple ring rot in vitro and in vivo. Strain 9001 showed obvious antagonistic activity to B. dothidea YL-1 when plated on potato dextrose agar. Soaking healthy apples in the bacterial suspensions of strain 9001 prior to artificial inoculation of fungal pathogen resulted in a dramatic decrease in disease incidence when compared to the control. Moreover, either field application in the growth season or postharvest treatment of apples from infected orchards with bacterial suspensions of strain 9001 resulted in significantly reduced disease incidence within the storage period for 4 months at room temperature. Based on the phylogenetic analysis of 16S rRNA and the gyrA gene, strain 9001 was identified as Bacillus amyloliquefaciens. These results indicated that B. amyloliquefaciens 9001 could be a promising agent in biocontrol of apple ring rot on fruit, which might help to minimize the yield loss of apple fruit during the long postharvest period.

사과나무 갈색무늬병의 발생생태 (Ecology of Marssonina Blotch Caused by Diplocarpon mali on Apple Tree in Kyungpook, Korea)

  • 김동아;이순원;이준탁
    • Current Research on Agriculture and Life Sciences
    • /
    • 제16권
    • /
    • pp.84-95
    • /
    • 1998
  • 1960년대까지 우리나라 전역에 걸쳐 발생하여 큰 피해를 초래했던 사과나무 갈색무늬병은 후지 등의 새로운 사과 품종 도입과 농약의 개발로 크게 문제되지 않았으나, 최근 1990년대에 들어서면서 후지 등의 신품종에도 발병되기 시작하여 농약 관행방제 과수원에서도 조기낙엽 등의 큰 피해를 일으키고 있다. 1992년부터 1995년까지 경북지역 사과주산지를 중심으로 갈색무늬병의 발생상황과 포자비산상황 등 발생생태와 기상, 재배품종, 재배관리 및 방제방법 등에 따른 갈색무늬병의 다발생요인을 조사하여 분석한 결과, 갈색무늬병은 6월부터 발생하기 시작하여 8월이후 대부분의 과수원에서 발생하였고, 9월이후에는 발병율이 급격히 증가하였으며, 기온이 낮고 강우량이 많은 해에 발생이 많았다. 병원균의 포자비산은 5월부터 시작되어 10월까지 계속되었고, 8월에 최고의 peak를 나타내었으며, 연도에 따른 차이는 있으나 대체로 8~9월에 전체 포자비산량의 70% 이상이 비산되었는데 강우가 많을 때 비산량이 많은 것으로 나타났다. 경북지역에 있어서 북부 산간지역인 영주, 청송, 안동에서 대체로 갈색무늬병의 발생이 많았고, 남부지역인 군위와 영천에서는 상대적으로 발병이 낮았다. 재배품종별로는 홍옥에서 발생이 가장 많았고, 조나골드과 세계일은 중간 정도이며, 다음으로 주품종인 후지, 쓰가루 순이었다. 갈색무늬병은 관수와 배수가 불량하고 밀식으로 투광, 통풍이 잘 되지 않으며, 시비관리가 제대로 되지 않는 등 전반적으로 재배관리상태가 나쁜 과수원에서 발생이 많았으며, 방제에 있어서는 약제살포량이 적고, 약제살포간격이 길어 방제가 소홀한 과수원에서 발생이 많은 것으로 나타났다.

  • PDF