DOI QR코드

DOI QR Code

Biological Control of Apple Ring Rot on Fruit by Bacillus amyloliquefaciens 9001

  • Li, Yan (Key Laboratory of Plant Pathology, Ministry of Agriculture, Department of Plant Pathology, China Agricultural University) ;
  • Han, Li-Rong (Research and Development Center of Biorational Pesticides, Northwest A & F University) ;
  • Zhang, Yuanyuan (Key Laboratory of Plant Pathology, Ministry of Agriculture, Department of Plant Pathology, China Agricultural University) ;
  • Fu, Xuechi (Key Laboratory of Plant Pathology, Ministry of Agriculture, Department of Plant Pathology, China Agricultural University) ;
  • Chen, Xinyi (Key Laboratory of Plant Pathology, Ministry of Agriculture, Department of Plant Pathology, China Agricultural University) ;
  • Zhang, Lixia (China Green Health Agriculture (Beijing) Biotechnology Co., Ltd.) ;
  • Mei, Ruhong (Key Laboratory of Plant Pathology, Ministry of Agriculture, Department of Plant Pathology, China Agricultural University) ;
  • Wang, Qi (Key Laboratory of Plant Pathology, Ministry of Agriculture, Department of Plant Pathology, China Agricultural University)
  • Received : 2012.08.17
  • Accepted : 2013.03.26
  • Published : 2013.06.01

Abstract

Apple ring rot disease, caused by Botryosphaeria dothidea (Moug. ex. Fr) Ces. et de Not., is one of the most important diseases on apple fruits. In this study, strain 9001 isolated from healthy apple fruits from an infested orchard was evaluated for its biocontrol activity against apple ring rot in vitro and in vivo. Strain 9001 showed obvious antagonistic activity to B. dothidea YL-1 when plated on potato dextrose agar. Soaking healthy apples in the bacterial suspensions of strain 9001 prior to artificial inoculation of fungal pathogen resulted in a dramatic decrease in disease incidence when compared to the control. Moreover, either field application in the growth season or postharvest treatment of apples from infected orchards with bacterial suspensions of strain 9001 resulted in significantly reduced disease incidence within the storage period for 4 months at room temperature. Based on the phylogenetic analysis of 16S rRNA and the gyrA gene, strain 9001 was identified as Bacillus amyloliquefaciens. These results indicated that B. amyloliquefaciens 9001 could be a promising agent in biocontrol of apple ring rot on fruit, which might help to minimize the yield loss of apple fruit during the long postharvest period.

Keywords

References

  1. Arras, G. and Arru, S. 1997. Mechanism of action of some microbial antagonists against fungal pathogens. Ann. Microbiol. Enzimol. 47:97−120.
  2. Berg, G. 2009. Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl. Microbiol. Biotechnol. 84:11−18.
  3. Cao, Y., Xu, Z.H., Ling, N., Yuan, Y. J., Yang, X. M., Chen, L. H., Shen, B. and Shen, Q. R. 2012. Isolation and identification of lipopeptides produced by B. subtilis SQR 9 for suppressing Fusarium wilt of cucumber. Sci. Hortic. (Amsterdam) 135:32−39.
  4. Chun, J. and Bae, K. S. 2000. Phylogenetic analysis of Bacillus subtilis and related taxa based on partial gyrA gene sequences. Anton. Leeuw. Int. J. G. 78:123−127.
  5. Droby, S., Wisniewski, M., Macarisin, D. and Wilson, C. 2009. Twenty years of postharvest biocontrol research: Is it time for a new paradigm? Postharvest Biol. Tech. 52:137−145.
  6. Errington, J. 2003. Regulation of endospore formation in Bacillus subtilis. Nat. Rev. Microbiol. 1:117−126.
  7. Fravel, D. R. 2005. Commercialization and implementation of biocontrol. Annu. Rev. Phytopathol. 43:337−359.
  8. Hamdache, A., Lamarti, A., Aleu, J. and Collado, I. G. 2011. Nonpeptide metabolites from the genus Bacillus. J. Nat. Prod. 74:893−899.
  9. Janisiewicz, W. J. and Korsten, L. 2002. Biological control of postharvest diseases of fruits. Annu. Rev. Phytopathol. 40: 411−441.
  10. Kang, L., Hao, H., Zhenying, Y., Li, X. and Kang, G. 2009. The advances in the research of apple ring rot. Chin. Agric. Sci. Bull. 25:188−191.
  11. Kexiang, G., Xiaoguang, L., Yonghong, L., Tianbo, Z. and Shuliang, W. 2002. Potential of Trichoderma harzianum and T. atroviride to control Botryosphaeria berengeriana f. sp. piricola, the cause of apple ring rot. J. Phytopathol. 150:271−276.
  12. Kong, H. G., Kim, J. C., Choi, G. J., Lee, K. Y., Kim, H. J., Hwang, E. C., Moon, B. J. and Lee, S. W. 2012. Production of furfactin and iturin by Bacillus lichenifortnis N1 responsible for plant disease control activity. Plant Pathol. J. 26:170−177.
  13. Larena, I., Torres, R., De Cal, A., Linan, M., Melgarejo, P., Domenichini, P., Bellini, A., Mandrin, J. F., Lichou, J., de Eribe, X. O. and Usall, J. 2005. Biological control of postharvest brown rot (Monilinia spp.) of peaches by field applications of Epicoccum nigrum. Biol. Conc. 32:305−310.
  14. Lee, G. W., Ko, J. A., Oh, B. T., Choi, J. R., Lee, K. J., Chae, J. C. and Kamala-Kannan, S. 2012. Biological control of postharvest diseases of apples, peaches and nectarines by Bacillus subtilis S16 isolated from halophytes rhizosphere. Biocontrol Sci. Technol. 22:351−361.
  15. Lee, K. Y., Heo, K. R., Choi, K. H., Kong, H. G., Nam, J., Yi, Y. B., Park, S. H., Lee, S. W. and Moon, B. J. 2009. Characterization of a chitinase gene exhibiting antifungal activity from a biocontrol bacterium Bacillus licheniformis N1. Plant Pathol. J. 25:344−351.
  16. Li, J., Yang, Q., Zhao, L. H., Zhang, S. M., Wang, Y. X. and Zhao, X. Y. 2009. Purification and characterization of a novel antifungal protein from Bacillus subtilis strain B29. J. Zhejiang Univ. Sci. B 10:264−272.
  17. Li, L. H., Ma, J. C., Li, Y., Wang, Z. Y., Gao, T. T. and Wang, Q. 2012. Screening and partial characterization of Bacillus with potential applications in biocontrol of cucumber Fusarium wilt. Crop Prot. 35:29−35.
  18. Liu, J., Zhou, T., He, D., Li, X. Z., Wu, H. J., Liu, W. Z. and Gao, X. W. 2011. Functions of lipopeptides bacillomycin D and fengycin in antagonism of Bacillus amyloliquefaciens C06 towards Monilinia fructicola. J. Mol. Microbiol. Biotechnol. 20:43−52.
  19. Marchesi, J. R., Sato, T., Weightman, A. J., Martin, T. A., Fry, J. C., Hiom, S. J. and Wade, W. G. 1998. Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl. Environ. Microbiol. 64:795−799.
  20. Mikani, A., Etebarian, H. R., Sholberg, P. L., O'Gorman, D. T., Stokes, S. and Alizadeh, A. 2008. Biological control of apple gray mold caused by Botrytis mali with Pseudomonas fluorescens strains. Postharvest Biol. Tech. 48:107−112.
  21. Nicholson, W. L. 2002. Roles of Bacillus endospores in the environment. Cell. Mol. Life Sci. 59:410−416.
  22. Nunes, C. 2012. Biological control of postharvest diseases of fruit. Eur. J. Plant Pathol. 133:181−196.
  23. Ongena, M. and Jacques, P. 2008. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 16:115−125.
  24. Santoyo, G., Orozco-Mosqueda, M. D. and Govindappa, M. 2012. Mechanisms of biocontrol and plant growth-promoting activity in soil bacterial species of Bacillus and Pseudomonas: a review. Biocontrol Sci. Technol. 22:855−872.
  25. Sharma, R. R., Singh, D. and Singh, R. 2009. Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: A review. Biol. Conc. 50:205−221.
  26. Stein, T. 2005. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol. Microbiol. 56:845−857.
  27. Tamura, K., Dudley, J., Nei, M. and Kumar, S. 2007. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24:1596−1599.
  28. Tang, W., Ding, Z., Zhou, Z., Wang, Y. and Guo, L. 2012. Phylogenetic and pathogenic analyses show that the causal agent of apple ring rot in China is Botryosphaeria dothidea. Plant Dis. 96:486−496.
  29. Vitullo, D., Di Pietro, A., Romano, A., Lanzotti, V. and Lima, G. 2012. Role of new bacterial surfactins in the antifungal interaction between Bacillus amyloliquefaciens and Fusarium oxysporum. Plant Pathol. 61:689−699.
  30. Wisniewski, M. E. and Wilson, C. L. 1992. Biological control of postharvest diseases of fruits and vegetables: recent advances. HortScience 27:94−98.
  31. Yanez-Mendizabal, V., Zeriouh, H., Vinas, I., Torres, R., Usall, J., de Vicente, A., Perez-Garcia, A. and Teixido, N. 2012. Biological control of peach brown rot (Monilinia spp.) by Bacillus subtilis CPA-8 is based on production of fengycin-like lipopeptides. Eur. J. Plant Pathol. 132:609−619.
  32. Ye, Y. F., Li, Q. Q., Fu, G., Yuan, G. Q., Miao, J. H. and Lin, W. 2012. Identification of antifungal substance (Iturin $A_{2}$) produced by Bacillus subtilis B47 and its effect on southern corn leaf blight. J. Integr. Agric. 11:90−99.
  33. Yu, G. Y., Sinclair, J. B., Hartman, G. L. and Bertagnolli, B. L., 2002. Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biol. Biochem. 34:955−963.
  34. Zhang, J. X., Xue, A. G. and Tambong, J. T. 2009. Evaluation of seed and soil treatments with novel Bacillus subtilis strains for control of soybean root rot caused by Fusarium oxysporum and F. graminearum. Plant Dis. 93:1317−1323.

Cited by

  1. Biological Control Activities of Rice-Associated Bacillus sp. Strains against Sheath Blight and Bacterial Panicle Blight of Rice vol.11, pp.1, 2016, https://doi.org/10.1371/journal.pone.0146764
  2. Essential Oils as Biocides for the Control of Fungal Infections and Devastating Pest (Tuta absoluta ) of Tomato (Lycopersicon esculentum Mill .) vol.14, pp.7, 2017, https://doi.org/10.1002/cbdv.201700065
  3. Fengycin produced by Bacillus subtilis 9407 plays a major role in the biocontrol of apple ring rot disease vol.199, 2017, https://doi.org/10.1016/j.micres.2017.03.004
  4. Characterization of Bacillus mojavensis KJS-3 for the Promotion of Plant Growth vol.25, pp.8, 2015, https://doi.org/10.5352/JLS.2015.25.8.910
  5. Genome-Wide Profiling of Histone Modifications (H3K9me2 and H4K12ac) and Gene Expression in Rust (Uromyces appendiculatus) Inoculated Common Bean (Phaseolus vulgaris L.) vol.10, pp.7, 2015, https://doi.org/10.1371/journal.pone.0132176
  6. Isolation and characterization of Bacillus amyloliquefaciens PG12 for the biological control of apple ring rot vol.115, 2016, https://doi.org/10.1016/j.postharvbio.2015.12.021
  7. Burkholderia isolates from a sand dune leaf litter display biocontrol activity against the bole rot disease of Agave sisalana vol.112, 2017, https://doi.org/10.1016/j.biocontrol.2017.06.005