• Title/Summary/Keyword: apoptotic proteins

검색결과 507건 처리시간 0.023초

E3 ubiquitin ligases and deubiquitinases as modulators of TRAIL-mediated extrinsic apoptotic signaling pathway

  • Woo, Seon Min;Kwon, Taeg Kyu
    • BMB Reports
    • /
    • 제52권2호
    • /
    • pp.119-126
    • /
    • 2019
  • The tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) initiates the extrinsic apoptotic pathway through formation of the death-inducing signaling complex (DISC), followed by activation of effector caspases. TRAIL receptors are composed of death receptors (DR4 and DR5), decoy receptors (DcR1 and DcR2), and osteoprotegerin. Among them, only DRs activate apoptotic signaling by TRAIL. Since the levels of DR expressions are higher in cancer cells than in normal cells, TRAIL selectively activates apoptotic signaling pathway in cancer cells. However, multiple mechanisms, including down-regulation of DR expression and pro-apoptotic proteins, and up-regulation of anti-apoptotic proteins, make cancer cells TRAIL-resistant. Therefore, many researchers have investigated strategies to overcome TRAIL resistance. In this review, we focus on protein regulation in relation to extrinsic apoptotic signaling pathways via ubiquitination. The ubiquitin proteasome system (UPS) is an important process in control of protein degradation and stabilization, and regulates proliferation and apoptosis in cancer cells. The level of ubiquitination of proteins is determined by the balance of E3 ubiquitin ligases and deubiquitinases (DUBs), which determine protein stability. Regulation of the UPS may be an attractive target for enhancement of TRAIL-induced apoptosis. Our review provides insight to increasing sensitivity to TRAIL-mediated apoptosis through control of post-translational protein expression.

Anti-apoptosis Engineering

  • Kim, Eun-Jeong;Park, Tai-Hyun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제8권2호
    • /
    • pp.76-82
    • /
    • 2003
  • An increased understanding of apoptosis makes anti-apoptosis engineering possible, which is an approach used to inhibit apoptosis for the purpose of therapeutic, or industrial applications in the treatment of the diseases associated with increased apoptosis, or to improve the productivity of animal cell cultures, respectively. Some known anti-apoptosis proteins are the Bcl-2 family, IAP (inhibitor of apoptosis) and Hsps (heat shock proteins), with which anti-apoptosis engineering has progressed. This article reviews anti-apoptosis engineering using known anti-apoptosis compounds, and introduces a 30 K protein, isolated from silkworm hemolymph, as a novel anti-apoptotic protein, that Shows no homology with other known anti-apoptotic proteins. The regulation of apoptosis, using anti-apoptotic proteins and genes originating from the silkworm, Bombyx mori, may provide a new strategy in this field.

사포닌 변환에 의한 맞춤형 인삼제품개발 (Development of Consumer demand Ginseng Products Using Saponin Modification Techniques)

  • 양덕춘;최광태
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2012년도 정기총회 및 춘계학술발표회
    • /
    • pp.8-8
    • /
    • 2012
  • Ginseng have been traditionally used for strengthening immunity, providing nutrition and recovering health from fatigue. Recently, pharmaceutical activities of ginseng roots have been proven by many researches, and ginseng has become a world-famous medicinal plant. Ginseng saponin, ginsenoside, is one of the most important secondary metabolite in ginseng which has various pharmacological activities. Many studies have aimed to convert major ginsenosides to the more active minor ginsenoside Rg3 for consumer demand ginseng product. Microbial strain GS514 strain was isolated from soil around ginseng roots for enzymatic preparation of ginsenoside Rg3, which strain shows strong ability of converting ginsenoside Rb1and Rd into Rg3 in the solution with NaCl. The gene encoding a ${\beta}$-glucosidase from this GS514 was cloned and expressed in the BL21 (DE3) strain of Escherichia coli. The recombinant enzyme was purified and characterized. The molecular mass of purified was 87.5 kDa, as determined by SDS-PAGE. The gene sequence revealed significant homology to the family 3 glycoside hydrolases. The purified single enzyme also catalyzed the conversion of ginsenoside Rb1 into Rg3. This target enzyme will be able to produce as much saponin for consumer demand ginseng product. Anti-apoptotic proteins bind with pro-apoptotic proteins to induce apoptosis mechanism. Over expression of these anti-apoptotic proteins lead to several cancers by preventing apoptosis. Docking simulations were performed for anti-apoptotic proteins with several ginsenosides from Panax ginseng. Our finding shows ginsenosides particularly Rg3, Rh2 and Rf have more binding affinity with apoptotic proteins. Further, these docking system of each ginsenosides can be extended to experimental screen system for further brief confirmations of several diseases.

  • PDF

The role of mitochondria in apoptosis

  • Jeong, Seon-Yong;Seol, Dai-Wu
    • BMB Reports
    • /
    • 제41권1호
    • /
    • pp.11-22
    • /
    • 2008
  • Apoptosis (programmed cell death) is a cellular self-destruction mechanism that is essential for a variety of biological events, such as developmental sculpturing, tissue homeostasis, and the removal of unwanted cells. Mitochondria play a crucial role in regulating cell death. $Ca^{2+}$ has long been recognized as a participant in apoptotic pathways. Mitochondria are known to modulate and synchronize $Ca^{2+}$ signaling. Massive accumulation of $Ca^{2+}$ in the mitochondria leads to apoptosis. The $Ca^{2+}$ dynamics of ER and mitochondria appear to be modulated by the Bcl-2 family proteins, key factors involved in apoptosis. The number and morphology of mitochondria are precisely controlled through mitochondrial fusion and fission process by numerous mitochondria-shaping proteins. Mitochondrial fission accompanies apoptotic cell death and appears to be important for progression of the apoptotic pathway. Here, we highlight and discuss the role of mitochondrial calcium handling and mitochondrial fusion and fission machinery in apoptosis.

Protective Effects of Oleic Acid Against Palmitic Acid-Induced Apoptosis in Pancreatic AR42J Cells and Its Mechanisms

  • Ahn, Joung Hoon;Kim, Min Hye;Kwon, Hyung Joo;Choi, Soo Young;Kwon, Hyeok Yil
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제17권1호
    • /
    • pp.43-50
    • /
    • 2013
  • Palmitic acid (PAM), one of the most common saturated fatty acid (SFA) in animals and plants, has been shown to induce apoptosis in exocrine pancreatic AR42J cells. In this study, we investigated cellular mechanisms underlying protective effects of oleic acid (OLA) against the lipotoxic actions of PAM in AR42J cells. Exposure of cells to long-chain SFA induced apoptotic cell death determined by MTT cell viability assay and Hoechst staining. Co-treatment of OLA with PAM markedly protected cells against PAM-induced apoptosis. OLA significantly attenuated the PAM-induced increase in the levels of pro-apoptotic Bak protein, cleaved forms of apoptotic proteins (caspase-3, PARP). On the contrary, OLA restored the decreased levels of anti-apoptotic Bcl-2 family proteins (Bcl-2, Bcl-xL, and Mcl-1) in PAM-treated cells. OLA also induced up-regulation of the mRNA expression of Dgat2 and Cpt1 genes which are involved in triacylglycerol (TAG) synthesis and mitochondrial ${\beta}$-oxidation, respectively. Intracellular TAG accumulation was increased by OLA supplementation in accordance with enhanced expression of Dgat2 gene. These results indicate that restoration of anti-apoptotic/pro-apop-totic protein balance from apoptosis toward cell survival is involved in the cytoprotective effects of OLA against PAM-induced apoptosis in pancreatic AR42J cells. In addition, OLA-induced increase in TAG accumulation and up-regulation of Dgat2 and Cpt1 gene expressions may be possibly associated in part with the ability of OLA to protect cells from deleterious actions of PAM.

Structural insights into the transcription-independent apoptotic pathway of p53

  • Chi, Seung-Wook
    • BMB Reports
    • /
    • 제47권3호
    • /
    • pp.167-172
    • /
    • 2014
  • Reactivating the p53 pathway in tumors is an important strategy for anticancer therapy. In response to diverse cellular stresses, the tumor suppressor p53 mediates apoptosis in a transcription-independent and transcription-dependent manner. Although extensive studies have focused on the transcription-dependent apoptotic pathway of p53, the transcription-independent apoptotic pathway of p53 has only recently been discovered. Molecular interactions between p53 and Bcl-2 family proteins in the mitochondria play an essential role in the transcription-independent apoptosis of p53. This review describes the structural basis for the transcription-independent apoptotic pathway of p53 and discusses its potential application to anticancer therapy.

Unlocking the Therapeutic Potential of BCL-2 Associated Protein Family: Exploring BCL-2 Inhibitors in Cancer Therapy

  • Bisan El Dakkak;Jalal Taneera;Waseem El-Huneidi;Eman Abu-Gharbieh;Rifat Hamoudi;Mohammad H. Semreen;Nelson C. Soares;Eman Y. Abu-Rish;Mahmoud Y. Alkawareek;Alaaldin M. Alkilany;Yasser Bustanji
    • Biomolecules & Therapeutics
    • /
    • 제32권3호
    • /
    • pp.267-280
    • /
    • 2024
  • Apoptosis, programmed cell death pathway, is a vital physiological mechanism that ensures cellular homeostasis and overall cellular well-being. In the context of cancer, where evasion of apoptosis is a hallmark, the overexpression of anti-apoptotic proteins like Bcl2, Bcl-xL and Mcl-1 has been documented. Consequently, these proteins have emerged as promising targets for therapeutic interventions. The BCL-2 protein family is central to apoptosis and plays a significant importance in determining cellular fate serving as a critical determinant in this biological process. This review offers a comprehensive exploration of the BCL-2 protein family, emphasizing its dual nature. Specifically, certain members of this family promote cell survival (known as anti-apoptotic proteins), while others are involved in facilitating cell death (referred to as pro-apoptotic and BH3-only proteins). The potential of directly targeting these proteins is examined, particularly due to their involvement in conferring resistance to traditional cancer therapies. The effectiveness of such targeting strategies is also discussed, considering the tumor's propensity for anti-apoptotic pathways. Furthermore, the review highlights emerging research on combination therapies, where BCL-2 inhibitors are used synergistically with other treatments to enhance therapeutic outcomes. By understanding and manipulating the BCL-2 family and its associated pathways, we open doors to innovative and more effective cancer treatments, offering hope for resistant and aggressive cases.

A Conserved Mechanism for Binding of p53 DNA-Binding Domain and Anti-Apoptotic Bcl-2 Family Proteins

  • Lee, Dong-Hwa;Ha, Ji-Hyang;Kim, Yul;Jang, Mi;Park, Sung Jean;Yoon, Ho Sup;Kim, Eun-Hee;Bae, Kwang-Hee;Park, Byoung Chul;Park, Sung Goo;Yi, Gwan-Su;Chi, Seung-Wook
    • Molecules and Cells
    • /
    • 제37권3호
    • /
    • pp.264-269
    • /
    • 2014
  • The molecular interaction between tumor suppressor p53 and the anti-apoptotic Bcl-2 family proteins plays an essential role in the transcription-independent apoptotic pathway of p53. In this study, we investigated the binding of p53 DNA-binding domain (p53DBD) with the anti-apoptotic Bcl-2 family proteins, Bcl-w, Mcl-1, and Bcl-2, using GST pull-down assay and NMR spectroscopy. The GST pull-down assays and NMR experiments demonstrated the direct binding of the p53DBD with Bcl-w, Mcl-1, and Bcl-2. Further, NMR chemical shift perturbation data showed that Bcl-w and Mcl-1 bind to the positively charged DNA-binding surface of p53DBD. Noticeably, the refined structural models of the complexes between p53DBD and Bcl-w, Mcl-1, and Bcl-2 showed that the binding mode of p53DBD is highly conserved among the anti-apoptotic Bcl-2 family proteins. Furthermore, the chemical shift perturbations on Bcl-w, Mcl-1, and Bcl-2 induced by p53DBD binding occurred not only at the p53DBD-binding acidic region but also at the BH3 peptide-binding pocket, which suggests an allosteric conformational change similar to that observed in Bcl-$X_L$. Taken altogether, our results revealed a structural basis for a conserved binding mechanism between p53DBD and the anti-apoptotic Bcl-2 family proteins, which shed light on to the molecular understanding of the transcription-independent apoptosis pathway of p53.

Expression of Bcl-2 and Caspase-3 Proteins Related to Apoptosis in Human Leukemia K-562 Cells

  • Chang Jeong-Hyun;Kwon Heun-Young
    • 대한의생명과학회지
    • /
    • 제11권3호
    • /
    • pp.281-287
    • /
    • 2005
  • Although actinomycin D (AMD) is known to induce apoptotic cell death to various cell lines, the mechanism of apoptosis induced by AMD is still unclear. Understanding this mechanism may improve its therapeutic efficacy. The present study has been performed to elucidate expression of Bcl-2 and Caspase-3 proteins related to apoptosis in human leukemia K-562 cells. Five different assays were performed in this study; DNA fragmentation analysis by agarose gel electrophoresis, quantitative assay of fragmented DNA, morphological assessment of apoptotic cells, quantification of apoptosis by annexin V (AV) and propidium iodide (PI) staning, and expression of Bcl-2 and Caspase-3 proteins by the western blot analysis. The number of apoptotic cells and amount of fragmented DNA in this cell line treated with AMD was increased at 6 hour. DNA ladder pattern was also appeared at 6 hour. The expression of Bcl-2 was decreased, and disappeared from 12 hours after AMD treatment. Precursor of Caspase-3 was degraded, and 20 kDa cleavage products were detected. These results suggest that AMD induced apoptosis of K-562 cells is Caspase-3-dependent fashion, and this apoptosis is related to the degradation of Bcl-2 proteins.

  • PDF

Immunohistochemical Changes of Apoptotic Control Genes by Chronic Inhibition of Nitric Oxide in Rats

  • Bae, Hyung-Joon
    • 대한의생명과학회지
    • /
    • 제18권4호
    • /
    • pp.420-427
    • /
    • 2012
  • Sprague-Dawley (SD) rats were orally administered with NG-nitro-L-arginine methyl ester (L-NAME), which inhibits or blocks the production of nitric oxide from L-arginine in vascular endothelial cells and vessel tissue. We examined the effects of nitric oxide on some physiological changes such as blood pressure and heart rate, and confirms the apoptosis induced by the suppressed nitric oxide activity in the kidney. This study was performed to investigate correlation between the activities of nitric oxide and apoptosis by immunohistochemical changes of apoptotic control proteins with regulated chronic inhibition of nitric oxide. In the kidney from L-NAME-treated group, immunohistochemical reaction to the antigens of apoptosis inhibiting proteins such as bcl-2 and bcl-xL, exhibited a time-dependent reduction. The expression of apoptosis-inhibiting proteins such as bax and p53 increased expression in proportion to the duration of treatment. The most sensitive apoptosis regulating proteins to L-NAME were p53 in stimulation and bcl-2 in inhibition, respectively.