Anti-apoptosis Engineering

  • Kim, Eun-Jeong (School of Chemical Engineering and Institute of Chemical Processes, Seoul National University) ;
  • Park, Tai-Hyun (School of Chemical Engineering and Institute of Chemical Processes, Seoul National University)
  • Published : 2003.04.01

Abstract

An increased understanding of apoptosis makes anti-apoptosis engineering possible, which is an approach used to inhibit apoptosis for the purpose of therapeutic, or industrial applications in the treatment of the diseases associated with increased apoptosis, or to improve the productivity of animal cell cultures, respectively. Some known anti-apoptosis proteins are the Bcl-2 family, IAP (inhibitor of apoptosis) and Hsps (heat shock proteins), with which anti-apoptosis engineering has progressed. This article reviews anti-apoptosis engineering using known anti-apoptosis compounds, and introduces a 30 K protein, isolated from silkworm hemolymph, as a novel anti-apoptotic protein, that Shows no homology with other known anti-apoptotic proteins. The regulation of apoptosis, using anti-apoptotic proteins and genes originating from the silkworm, Bombyx mori, may provide a new strategy in this field.

Keywords

References

  1. Methods Archive Exp. Pathol. v.13 Patterns of cell death Walker,N.I.;B.V.Harmon;G.C.Gobe;J.F.R.Kerr
  2. J. Pathol. v.142 Chromatin cleavage in apoptosis: Association with condensed chromatin morphology and dependence on macromolecular synthesis Wyllie,A.H.;R.G.Morris;A.L.Smith;D.Dunlop
  3. Int. Rev. Cytol. v.68 Cell death: the significance of apoptosis Wyllie,A.H.;J.F.R.Kerr;A.R.Currie https://doi.org/10.1016/S0074-7696(08)62312-8
  4. Annu. Rev. Cell Biol. v.7 Mechanisms and functions of cell death Ellis,R.E.;J.Yuan;H.R.Horvitz https://doi.org/10.1146/annurev.cb.07.110191.003311
  5. Science v.262 Programmed cell death and the control of cell survival: Lessons form nervous system Raff,M.C.;B.A.Barres;J.F.Burne;H.S.Coles;Y.Ishizaki;M.D.Jacobson https://doi.org/10.1126/science.8235590
  6. Bio. Rev. Cambridge Phil. Soc. v.26 Cell death in nornal vertebrated ontogeny Glucksmann,A.
  7. Br. J. Cancer v.26 Apoptosis: A basic biological phenomenon with wideranging implications in tissue kinetics Kerr,J.F.R.;A.H.Wyllie;A.H.Currie https://doi.org/10.1038/bjc.1972.33
  8. Semin. Immunol. v.9 The molecular regulation of lymphocyte apoptosis Lenardo,M.J. https://doi.org/10.1006/smim.1996.0050
  9. Dev. Biol. v.138 Genetic mosaic analysis of ced-3 and ced-4, two genes that control programmed cell death in the nematode C. elegans Yuan,J.Y.;R.H.Horvitz https://doi.org/10.1016/0012-1606(90)90174-H
  10. Nature v.356 Caenorhabditis elegans gene ced-9 protects cells from programmed cell death Hengartner,M.O.;R.E.Ellis;R.H.Horvitz https://doi.org/10.1038/356494a0
  11. Cell v.76 C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bcl-2 Hengartner,M.O.;R.H.Horvitz https://doi.org/10.1016/0092-8674(94)90506-1
  12. Cell v.75 The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1β converting enzyme Yuan,J.Y.;S.Shaham;S.Ledoux;M.H.Ellis;R.H.Horvitz https://doi.org/10.1016/0092-8674(93)90485-9
  13. Science v.275 Interaction of CED-4 with CED-3 and CED-9: A molecular framework for cell death Chinnaiyan,A.M.;K.O'Rourke;B.R.Lane;V.M.Dixit https://doi.org/10.1126/science.275.5303.1122
  14. Cell v.30 Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of capases-3 Zou,H.;W.J.Henzel;X.Liu;A.Lutschg;X.Wang
  15. Cell v.81 Yma/CPP32β, a mammalian homolog of ced-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-reibose) polymerase Tewari,M.;L.Quan;K.O'Rourke;S.Desonoyers;Z.Zeng;D.R.Beidler;G.G.Poirier;G.S.Salvesen;V.M.Dixit https://doi.org/10.1016/0092-8674(95)90541-3
  16. Science v.254 Prevention of apoptosis by a baculovirus gene during infection of insect cells Clem,R.J.;M.Fechheimer;L.K.Miller https://doi.org/10.1126/science.1962198
  17. Cell v.85 A license to kill Fraser,A.;G.Evan https://doi.org/10.1016/S0092-8674(00)81005-3
  18. Trends Biotechnol. v.16 Overcoming apoptosis: New methods for improving protein-expression systems Mastrangelo,A.J.;M.J.Betenbaugh https://doi.org/10.1016/S0167-7799(97)01159-1
  19. Biochim. Biophysis. Acta v.1366 Mitochondria as a regulator of apoptosis-doubt no more Susin,S.A.;N.Zamzami;G.Kroemer https://doi.org/10.1016/S0005-2728(98)00110-8
  20. Cell v.86 Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Liu,X.;C.N.Kim;J.Yang;X.Wang https://doi.org/10.1016/S0092-8674(00)80085-9
  21. Mol. Cell v.1 Autoactivation of pro-caspase-9 by Apaf-1-mediated oligomerization Srinivasula,S.M.;M.Ahmad;T.Fernandes-Alnemri;E.S.Alnemri https://doi.org/10.1016/S1097-2765(00)80095-7
  22. Drug Resist. Updat. v.2 Activation and role of caspases in chemocherapy-induced apoptosis Schmitt,E.;A.T.Snae;R.Bertrand https://doi.org/10.1054/drup.1999.0065
  23. Nature v.391 Bcl-2 prolongs cell survival after Bax-induced release of cytochrome c. Rosse,T.;R.Olivier;L.Monney;M.Rager;S.Conus;I.Fellay;B.Jansen;C.Borner https://doi.org/10.1038/35160
  24. J. Biol. Chem. v.273 Pro-caspase-3 is a major physiologic target of caspase-8 Stennicke,H.R.;J.M.Jurgensmeier;H.Shin https://doi.org/10.1074/jbc.273.42.27084
  25. Science v.228 Involvement of the bcl-2 gene in human follicular lymphoma Tsujimoto,Y.;J.Cossman;E.Jaff;C.Croce https://doi.org/10.1126/science.3874430
  26. Nature v.348 Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death Hockenbery,D.;G.Nunez;C.Milliman;R.D.Screiber;S.Korsmeyer https://doi.org/10.1038/348334a0
  27. J. Virol. v.67 An apoptosis-inhibiting baculovirus gene with a zinc finger-like motif Crook,N.E.;R.J.Clem;L.K.Miller
  28. J. Virol. v.68 An apoptosis-inhibiting gene from a nuclear polyhedrosis virus encoding a polypeptide with Cys/His sequence motif Birnbaum,M.J.;R.J.Clem;L.K.Miller
  29. Genes Dev. v.13 IAP family proteins Suppressor of apoptosis Deveraux,Q.L.;J.C.Reed https://doi.org/10.1101/gad.13.3.239
  30. Nature v.388 X-linked IAP is a direct inhibitor of cell-death proteases Deveraux,Q.L.;R.Takahashi;G.S.Salvesen;J.C.Reed https://doi.org/10.1038/40792
  31. EMBO J. v.16 The c-IAP-1 and c-IAP-2 proteins are direct inhibitors of specific caspases Roy,N.;Q.L.Deveraux;R.Takahashi;G.S.Salvesen;J.C.Reed https://doi.org/10.1093/emboj/16.23.6914
  32. Cancer Res. v.58 IAP-family protein survivin inhibits caspase activity and apoptosis induced by Fas(CD95), Bax, caspases, and anticancer drugs Tamm,I.;Y.Wang;E.Sausville;D.A.Scudiero;N.Vigna;T.Oltersdorf;J.C.Reed
  33. EMBO J. v.17 IAP block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases Deveraux,Q.L.;N.Roy;H.R.Stennicke;T.Van Arsdale;Q.Zhou;S.M.Srinivasula;E.S.Alnemri;G.S.Salvesen;J.C.Reed https://doi.org/10.1093/emboj/17.8.2215
  34. Cell v.83 The TNFR2-TRAF signaling complex contains two novel proteins related to baculovirus inhibitor of apoptosis proteins Rothe,M.;M.G.Pan;W.J.Henzel;T.M.Ayers;D.V.Goeddel https://doi.org/10.1016/0092-8674(95)90149-3
  35. Annu. Rev. Genet. v.22 The heat shock proteins Linquist,S.;E.A.Craig https://doi.org/10.1146/annurev.ge.22.120188.003215
  36. Adv. Protein Chem. v.44 Structure and mechanism of 70-kDa heat-shock-related proteins Mckey,D.B. https://doi.org/10.1016/S0065-3233(08)60564-1
  37. Biol. Chem. v.379 Small stress proteins: Chaperones that act as regulators of intracellular redox state and programmed cell death Arrigo,A.P.
  38. Cell v.92 The Hsp70 and Hsp60 chaperone machines Bukau,B.;A.L.Horwich https://doi.org/10.1016/S0092-8674(00)80928-9
  39. EMBO J. v.11 Major heat shock protein hsp70 protects tumor cells from tumor necrosis factor cytotoxicity Jaattela,M.;D.Wissing;P.A.Bauer;G.C.Li
  40. EMBO J. v.17 Hsp70 exerts its anti-apoptotic function downstream of cspase-3-like proteases Jaattela,M.;D.Wissing;K.Kokholm;T.Kallunki;M.Egeblad https://doi.org/10.1093/emboj/17.21.6124
  41. EMBO J. v.15 Human hsp27, Drosophila hsp27 and human α-crystallin expression-mediated increase in glutathion is essential for the protective activity of these proteins against TNFα-Iinduced cell death Mehlen,P.;C.Kretz-Remy;X.Preville;A.P.Arrigo
  42. Science v.267 Apoptosis in the pathogenesis and treatment of disease Thompson,C.B. https://doi.org/10.1126/science.7878464
  43. Biochem. Biophys. Res. Commun. v.266 Apoptosis in human disease: A new skin for the old ceremony Fadeel,B.;S.Orrenius;B.Zhivotovsky https://doi.org/10.1006/bbrc.1999.1888
  44. Cell v.69 Viral inhibition of inflammation: Cowpox virus encodes an inhibitor of the interleukin-1 beta converting enzyme Ray,C.A.;R.A.Black;S.R.Kronheim;T.A.Greenstreet;P.R.Sleath;G.S.Salvesen;D.J.Pickup https://doi.org/10.1016/0092-8674(92)90223-Y
  45. Science v.263 Prevention of vertebrate neuronal death by the crmA gene Gagliardini,V.;P.A.Fernandez;R.K.Lee;H.C.Drexler;R.J.Rotello;M.C.Fishman;J.Yuan https://doi.org/10.1126/science.8303301
  46. Proc. Natl. Acad. Sci. USA v.97 Transgenic mice neuronally expressing baculoviral p35 are resistant to diverse types of induced apoptosis, including seizure-associated neurodeg-eneration Viswanath,V.;Z.Wu;C.Fonck;Q.Wei;R.Boonplueang;J.K.Andersen https://doi.org/10.1073/pnas.030365297
  47. EMBO J. v.19 Targeted expression of baculovirus p35 caspase inhibitor in oligodendrocytes protects mice against autoimmune-mediated demyelination Hisahara,S.;T.Araki;F.Sugiyama;K.Yagami;M.Suzuki;K.Abe;K.Yamamura;J.Miyazaki;T.Momoi;T.Saruta;C.C.Bernard;H.Okano;M.Miura https://doi.org/10.1093/emboj/19.3.341
  48. Biochem. Biophys. Res. Commun. v.264 Marked induction of the IAP family antiapoptotic proteins survivin and XIAP by VEGF in vascular endothelial cells Tran,J.;J.Rak;C.Sheehan;S.D.Saibil;E.LaCasse;R.G.Korneluk;R.S.Kerbel https://doi.org/10.1006/bbrc.1999.1589
  49. Biotechnol. Bioeng. v.55 Extension of Sp2/0 hybridoma cell viability through interleukin-6 supplementation Chung,J.D.;C.Zabel;A.J.Sinskey;G.Stephanopoulos https://doi.org/10.1002/(SICI)1097-0290(19970720)55:2<439::AID-BIT21>3.0.CO;2-A
  50. Biotechnol. Bioeng. v.54 Prevention of hybridoma cell death by bcl-2 during suboptimal culture conditions Simpson,N.H.;A.E.Milner;M.Al-Rubeai https://doi.org/10.1002/(SICI)1097-0290(19970405)54:1<1::AID-BIT1>3.0.CO;2-K
  51. Biotechnol. Bioeng. v.71 Overexpression of bcl-2 inhibits sodium butyrate-induced apoptosis in Chinese hamster ovary cells resulting in enhanced humanized antibody production Kim,N.S.;G.M.Lee https://doi.org/10.1002/1097-0290(2000)71:3<184::AID-BIT1008>3.0.CO;2-W
  52. Biotechnol. Bioeng. v.78 Inhibition of sodium butyrate-induced apoptosis in recombinant Chinese hamster ovary cells by constitutively expressing antisense RNA of caspase-3 Kim,N.S.;G.M.Lee https://doi.org/10.1002/bit.10191
  53. Biotechnol. Bioeng. v.67 Part I. Bcl-2 and Bcl-x(L) limit apoptosis upon infection with alphavirus vectors Mastrangelo,A.J.;J.M.Hardwick;F.Bex;M.J.Betenbaugh https://doi.org/10.1002/(SICI)1097-0290(20000305)67:5<544::AID-BIT5>3.0.CO;2-#
  54. Biotechnol. Bioeng. v.67 Part Ⅱ. Overexpression of bcl-2 family members enhances survival of mammalian cells in response to various culture insults Mastrangelo,A.J.;J.M.Hardwick;S.Zou;M.J.Betenbaugh https://doi.org/10.1002/(SICI)1097-0290(20000305)67:5<555::AID-BIT6>3.0.CO;2-T
  55. Biotechnol. Bioeng. v.77 Inhibiting apoptosis in mammalian cell culture using the caspase inhibitor XIAP and deletion mutants Sauerwald,T.M.;M.J.Betenbaugh;G.A.Oyler https://doi.org/10.1002/bit.10154
  56. Biotechnol. Bioeng. v.81 Transfection of NS0 myeloma fusion partner cells with HSP70 gene results in higher hybridoma yield by improving cellular resistance to apoptosis Lasunskaia,E.B.;I.I.Fridlianskaia;Z.A.Darieva;M.S.Da Silva;M.M.Kanashiro;B.A.Margulis https://doi.org/10.1002/bit.10493
  57. Biotechnol. Bioeng. v.63 Apoptosis-resistant E1B-19K-expressing NS/0 myeloma cells exhibit increased viability and chimeric antibody productivity under perfusion culture conditions Mercille,S;B.Massie https://doi.org/10.1002/(SICI)1097-0290(19990605)63:5<529::AID-BIT3>3.0.CO;2-X
  58. Biotechnol. Tech. v.10 Silkworm hemolymph as a subsitute for fetal bovine serum in insect cell culture Ha,S.H.;T.H.Park;S.E.Kim
  59. Biotechnol. Bioprocess Eng. v.3 Oxidation-deficient silkworm hemolymph as a medium supplement for insect cell culture Kim,E.J.;J.Y.Choi;S.E.Kim;T.H.Park https://doi.org/10.1007/BF02932508
  60. J. Microbiol. Biotechnol. v.9 Reduction of FBS concentration through adaptation process in mammalian cell culture and addition of silkworm hemolymph in insect cell culture Kim,E.J.;T.H.Park
  61. Biotechnol. Lett. v.19 Utilization of silkworm hemolymph for production of recombinant protein in an insect cell-baculovirus system Ha,S.H.;T.H.Park https://doi.org/10.1023/A:1018484309194
  62. Biotechnol. Prog. v.15 Kinetic effect of silkworm hemolymph on the delayed host cell death in an insect cell-baculovirus system Rhee,W.J.;E.J.Kim;T.H.Park https://doi.org/10.1021/bp990093s
  63. Biochem. Biophys. Res. Commun. v.271 Silkworm hemolymph inhibits baculovirus-induced insect cell apoptosis Rhee,W.J.;T.H.Park https://doi.org/10.1006/bbrc.2000.2592
  64. J. Microbiol. Biotechnol. v.11 no.5 Flow cytometric analysis of the effect of silkworm hemolymph on the baculovirus-induced insect cell apoptosis Rhee,W.J.;T.H.Park
  65. Biochem. Biophys. Res. Commun. v.295 Silkworm hemolymph as a potent inhibitor of apoptosis in Sf9 cells Rhee,W.J.;E.J.Kim;T.H.Park https://doi.org/10.1016/S0006-291X(02)00746-5
  66. Biotechnol. Prog. v.18 Inhibition of human cell apoptosis by silkworm hemolymph Choi,S.S.;W.J.Rhee;T.H.Park https://doi.org/10.1021/bp020001q
  67. Biochem. Biophys. Res. Commun. v.285 Isolation and characterization of an apoptosis-inhibiting component from the hemolymph of Bombyx mori Kim,E.J.;W.J.Rhee;T.H.Park https://doi.org/10.1006/bbrc.2001.5148
  68. Biochim. Biophys. Acta v.670 Molecular properties and biosynthesis of major plasma proteins in Bombyx mori Izumi,S.;J.Fujie;S.Yamada;S.Tomino https://doi.org/10.1016/0005-2795(81)90013-1
  69. Develop. Biol. v.97 Development and sex-dependent regulation of storage protein synthesis in the silkworm, Bombyx mori Mine,E.;S.Izumi;M.Katsuki;S.Tomino https://doi.org/10.1016/0012-1606(83)90090-8
  70. Biochim. Biophys. Acta v.949 Structure and expression of mRNA coding for major plasma proteins of Bombyx mori Sakai,N.;S.Mori;S.Izumi;K.Haino Fukushima;T.Ogura;H.Maekawa;S.Tomino https://doi.org/10.1016/0167-4781(88)90086-3
  71. Ph. D. Thesis, Seoul National University Isolation of a Novel Anti-apoptotic Protein from the Hemolymph of Bombyx mori and Its Application to Animal Cell Culture Kim,E.J.
  72. Biotechnol. Adv. v.9 Production scale insect cell culture Agathos,S.N. https://doi.org/10.1016/0734-9750(91)90404-J
  73. Curr. Opin. Genet. Dev. v.3b Baculoviruses: High level expression on insect cells Miller,L.K.
  74. Invertebrate Cell System Infectivity of baculovirus to cultured cells Granados,R.R.;Y.Hashimoto;J.Mitsuhashi(ed.)