• Title/Summary/Keyword: apoptotic cells

Search Result 2,157, Processing Time 0.026 seconds

Treatment of Cinnamomi Cortex combined with hyperthermia synergistically suppressed proliferation and induced apoptosis in U937 cell line. (U937 세포에서 육계와 온열 병행 치료가 세포증식 억제와 세포사멸 유도에 미치는 연구)

  • Ahn, Chae Ryeong;Park, Sun-Hyang;Kim, Hong Jun;Jeong, Jeong Min;Baek, Seung Ho
    • Herbal Formula Science
    • /
    • v.27 no.1
    • /
    • pp.45-52
    • /
    • 2019
  • Objectives : Hyperthermia is a widely used therapeutic tool for cancer therapy and a well-known inducer of apoptosis. Although the Cinnamomi cortex (CC) is a potent anticancer agent for several human carcinomas, it is less potent in the human U937 cell line. To explore any enhancing effects of CC with hyperthermia induced apoptosis, this study investigated the combined effects and apoptotic mechanisms of hyperthermia and CC in U937 cells. Methods : U937 cells were heat treated at $43^{\circ}C$ for 30 min with or without pre-treatment for 1h with CC and then incubated at $37^{\circ}C$ with 5% $CO_2$. Cell viability was analyzed by MTT assay and Trypan blue assay. Morphological changes reflecting apoptosis were visualized under microscope. Synergy effect of CC combined with hyperthermia were calculated by Compusyn software. The expression of proteins related to apoptosis and signaling pathways was determined by western blotting. Results : Hyperthermia with CC reduced cell viability and induced apoptosis. Combined hyperthermia and CC treatment markedly augmented apoptosis by upregulating proapoptotic proteins and suppressing antiapoptotic proteins, culminating in caspase-3 activation. Furthermore, the combined treatment, decreased the expression of in Bcl-2 family, cyclin D1, VEGF, MMP2 and MMP9 expression. Conclusion : This study provides compelling evidence that hyperthermia, in combination with CC, is a promising therapeutic strategy for enhancement of apoptosis and suggests a promising therapeutic approach for cancer.

Suppressor of Variegation 3-9 Homolog 2, a Novel Binding Protein of Translationally Controlled Tumor Protein, Regulates Cancer Cell Proliferation

  • Kim, A-Reum;Sung, Jee Young;Rho, Seung Bae;Kim, Yong-Nyun;Yoon, Kyungsil
    • Biomolecules & Therapeutics
    • /
    • v.27 no.2
    • /
    • pp.231-239
    • /
    • 2019
  • Suppressor of Variegation 3-9 Homolog 2 (SUV39H2) methylates the lysine 9 residue of histone H3 and induces heterochromatin formation, resulting in transcriptional repression or silencing of target genes. SUV39H1 and SUV39H2 have a role in embryonic development, and SUV39H1 was shown to suppress cell cycle progression associated with Rb. However, the function of human SUV39H2 has not been extensively studied. We observed that forced expression of SUV39H2 decreased cell proliferation by inducing $G_1$ cell cycle arrest. In addition, SUV39H2 was degraded through the ubiquitin-proteasomal pathway. Using yeast two-hybrid screening to address the degradation mechanism and function of SUV39H2, we identified translationally controlled tumor protein (TCTP) as an SUV39H2-interacting molecule. Mapping of the interacting regions indicated that the N-terminal 60 amino acids (aa) of full-length SUV39H2 and the C-terminus of TCTP (120-172 aa) were critical for binding. The interaction of SUV39H2 and TCTP was further confirmed by co-immunoprecipitation and immunofluorescence staining for colocalization. Moreover, depletion of TCTP by RNAi led to up-regulation of SUV39H2 protein, while TCTP overexpression reduced SUV39H2 protein level. The half-life of SUV39H2 protein was significantly extended upon TCTP depletion. These results clearly indicate that TCTP negatively regulates the expression of SUV39H2 post-translationally. Furthermore, SUV39H2 induced apoptotic cell death in TCTP-knockdown cells. Taken together, we identified SUV39H2, as a novel target protein of TCTP and demonstrated that SUV39H2 regulates cell proliferation of lung cancer cells.

The Antimicrobial Peptide CopA3 Inhibits Clostridium difficile Toxin A-Induced Viability Loss and Apoptosis in Neural Cells

  • Yoon, I Na;Hwang, Jae Sam;Lee, Joon Ha;Kim, Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.1
    • /
    • pp.30-36
    • /
    • 2019
  • Numerous studies have reported that enteric neurons involved in controlling neurotransmitter secretion and motility in the gut critically contribute to the progression of gut inflammation. Clostridium difficile toxins, which cause severe colonic inflammation, are also known to affect enteric neurons. Our previous study showed that C. difficile toxin A directly induces neural cell toxicities, such as viability loss and apoptosis. In the current study, we attempted to identify a potent inhibitor of toxin A-induced neural cell toxicity that may aid in managing toxin A-induced gut inflammation. In our recent study, we found that the Korea dung beetle-derived antimicrobial peptide CopA3 completely blocked neural cell apoptosis caused by okadaic acid or 6-OHDA. Here, we examined whether the antimicrobial peptide CopA3 inhibited toxin A-induced neural cell damage. In neuroblastoma SH-SY5Y cells, CopA3 treatment protected against both apoptosis and viability loss caused by toxin A. CopA3 also completely inhibited activation of the pro-apoptotic factor, caspase-3. Additionally, CopA3 rescued toxin A-induced downregulation of neural cell proliferation. However, CopA3 had no effect on signaling through ROS/p38 $MAPK/p27^{kip1}$, suggesting that CopA3 inhibits toxin A-induced neural cell toxicity independent of this well-characterized toxin A pathway. Our data further suggest that ability of CopA3 to rescue toxin A-induced neural cell damage may also ameliorate the gut inflammation caused by toxin A.

Characterization of KRC-108 as a TrkA Kinase Inhibitor with Anti-Tumor Effects

  • Lee, Hyo Jeong;Moon, Yeongyu;Choi, Jungil;Heo, Jeong Doo;Kim, Sekwang;Nallapaneni, Hari Krishna;Chin, Young-Won;Lee, Jongkook;Han, Sun-Young
    • Biomolecules & Therapeutics
    • /
    • v.30 no.4
    • /
    • pp.360-367
    • /
    • 2022
  • Tropomyosin receptor kinase A (TrkA) protein is a receptor tyrosine kinase encoded by the NTRK1 gene. TrkA signaling mediates the proliferation, differentiation, and survival of neurons and other cells following stimulation by its ligand, the nerve growth factor. Chromosomal rearrangements of the NTRK1 gene result in the generation of TrkA fusion protein, which is known to cause deregulation of TrkA signaling. Targeting TrkA activity represents a promising strategy for the treatment of cancers that harbor the TrkA fusion protein. In this study, we evaluated the TrkA-inhibitory activity of the benzoxazole compound KRC-108. KRC-108 inhibited TrkA activity in an in vitro kinase assay, and suppressed the growth of KM12C colon cancer cells harboring an NTRK1 gene fusion. KRC-108 treatment induced cell cycle arrest, apoptotic cell death, and autophagy. KRC-108 suppressed the phosphorylation of downstream signaling molecules of TrkA, including Akt, phospholipase Cγ, and ERK1/2. Furthermore, KRC-108 exhibited antitumor activity in vivo in a KM12C cell xenograft model. These results indicate that KRC-108 may be a promising therapeutic agent for Trk fusion-positive cancers.

Exosomes: Nomenclature, Isolation, and Biological Roles in Liver Diseases

  • Seol Hee Park;Eun Kyeong Lee;Joowon Yim;Min Hoo Lee;Eojin Lee;Young-Sun Lee;Wonhyo Seo
    • Biomolecules & Therapeutics
    • /
    • v.31 no.3
    • /
    • pp.253-263
    • /
    • 2023
  • The biogenesis and biological roles of extracellular vesicles (EVs) in the progression of liver diseases have attracted considerable attention in recent years. EVs are membrane-bound nanosized vesicles found in different types of body fluids and contain various bioactive materials, including proteins, lipids, nucleic acids, and mitochondrial DNA. Based on their origin and biogenesis, EVs can be classified as apoptotic bodies, microvesicles, and exosomes. Among these, exosomes are the smallest EVs (30-150 nm in diameter), which play a significant role in cell-to-cell communication and epigenetic regulation. Moreover, exosomal content analysis can reveal the functional state of the parental cell. Therefore, exosomes can be applied to various purposes, including disease diagnosis and treatment, drug delivery, cell-free vaccines, and regenerative medicine. However, exosome-related research faces two major limitations: isolation of exosomes with high yield and purity and distinction of exosomes from other EVs (especially microvesicles). No standardized exosome isolation method has been established to date; however, various exosome isolation strategies have been proposed to investigate their biological roles. Exosome-mediated intercellular communications are known to be involved in alcoholic liver disease and nonalcoholic fatty liver disease development. Damaged hepatocytes or nonparenchymal cells release large numbers of exosomes that promote the progression of inflammation and fibrogenesis through interactions with neighboring cells. Exosomes are expected to provide insight on the progression of liver disease. Here, we review the biogenesis of exosomes, exosome isolation techniques, and biological roles of exosomes in alcoholic liver disease and nonalcoholic fatty liver disease.

Palmitic acid induces inflammatory cytokines and regulates tRNA-derived stress-induced RNAs in human trophoblasts

  • Changwon Yang;Garam An;Jisoo Song;Gwonhwa Song;Whasun Lim
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.37 no.4
    • /
    • pp.218-225
    • /
    • 2022
  • High levels of proinflammatory cytokines have been observed in obese pregnancies. Obesity during pregnancy may increase the risk of various pregnancyrelated complications, with pathogenesis resulting from excessive inflammation. Palmitic acid (PA) is a saturated fatty acid that circulates in high levels in obese women. In our previous study, we found that PA inhibited the proliferation of trophoblasts developing into the placenta, induced apoptosis, and regulated the number of cleaved halves derived from transfer RNAs (tRNAs). However, it is not known how the expression of tRNA-derived stress-induced RNAs (tiRNAs) changes in response to PA treatment at concentrations that induce inflammation in human trophoblasts. We selected concentrations that did not affect cell viability after dose-dependent treatment of HTR8/SVneo cells, a human trophoblast cell line. PA (200 μM) did not affect the expression of apoptotic proteins in HTR8/SVneo cells. PA significantly increased the expression of inflammatory cytokines including interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor (TNF)-α. In addition, 200 μM PA significantly increased the expression of tiRNAs compared to 800 μM PA treatment. These results suggest that PA impairs placental development during early pregnancy by inducing an inflammatory response in human trophoblasts. In addition, this study provides a basis for further research on the association between PA-induced inflammation and tiRNA generation.

Methanol extract of Myelophycus caespitosus ameliorates oxidative stress-induced cytotoxicity in C2C12 murine myoblasts via activation of heme oxygenase-1

  • Cheol Park;Hyun Hwangbo;Min Ho Han;Jin-Woo Jeong;Suengmok Cho;Gi-Young Kim;Hye-Jin Hwang;Yung Hyun Choi
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.1
    • /
    • pp.35-47
    • /
    • 2023
  • Myelophycus caespitosus, a brown alga belonging to genus Myelophycus, has been traditionally used as a food and medicinal resource in Northeastern Asia. However, few studies have been conducted on its pharmacological activity. In this study, we evaluated whether methanol extract of M. caespitosus (MEMC) could protect against oxidative damage caused by hydrogen peroxide (H2O2) in C2C12 murine myoblasts. Our results revealed that MEMC could suppress H2O2-induced growth inhibition and DNA damage while blocking the production of reactive oxygen species. In H2O2-treated cells, cell cycle progression was halted at the G2/M phase, accompanied by changes in expression of key cell cycle regulators. However, these effects were attenuated by MEMC. In addition, we found that MEMC protected cells from induction of apoptosis associated with mitochondrial impairment caused by H2O2 treatment. Furthermore, MEMC enhanced the phosphorylation of nuclear factor-erythroid-2 related factor 2 (Nrf2) and expression and activity of heme oxygenase-1 (HO-1) in H2O2-treaetd C2C12 myoblasts. However, such anti-apoptotic and cytoprotective effects of MEMC were greatly abolished by HO-1 inhibitor, suggesting that MEMC could increase Nrf2-mediated activity of HO-1 to protect C2C12 myoblasts from oxidative stress.

Comparative study on antioxidant activity of Gold 1, a new strain of Pyropia yezoensis

  • Jimin Hyun;Sang-Woon Lee;Hyeon Hak Jeong;Jae-Il Kim
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.2
    • /
    • pp.158-168
    • /
    • 2023
  • The global output of Pyropia yezoensis (dried seaweed or laver, also called 'Gim' in Korea) has been reduced over the half-decade due to the wide spread of red rot disease, a serious algal disease affecting P. yezoensis. Recently, Gold 1 (G1), which is a resistant strain of P. yezoensis to red rot disease, was developed and commercialized in South Korea, yet its physiological activity has not been investigated. In this study, a comparative study was performed on G1 and commercially available strain of P. yezoensis (CP) for their antioxidative activities. Aqueous extract of G1 showed more marked 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging activity compared to that of CP. In 293T cells, antioxidant activity against H2O2-induced reactive oxygen species (ROS) formation was only observed in G1 extract. In addition, G1 extract showed more potent inhibitory effect on H2O2-induced apoptotic cell death than CP extract, as examined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and fluorescence microscopy. Expression levels of various apoptosis-related genes, including B-cell lymphoma 2-associated X protein, p53, capase-3, and inflammatory cytokines, in H2O2-treated cells were significantly decreased by the treatment of G1. Taken together, the present study suggests that a new strain of red seaweed G1 can recover oxidative stress effectively by improving the imbalance of ROS generation and has a potential to be used a functional ingredient as an antioxidant source.

Induction of Autophagy by Low Dose of Cisplatin in H460 Lung Cancer Cells (폐암세포주에서 저용량 시스플라틴에 의해 유도된 자가포식)

  • Shin, Jeong-Hyun;Jang, Hye-Yeon;Chung, Jin-Soo;Cho, Kyung-Hwa;Hwang, Ki-Eun;Kim, So-Young;Kim, Hui-Jung;Lee, Sam-Youn;Lee, Mi-Kung;Park, Soon-Ah;Moon, Sun-Rock;Lee, Kang-Kyu;Jo, Hyang-Jeong;Yang, Sei-Hoon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.69 no.1
    • /
    • pp.16-23
    • /
    • 2010
  • Background: Most lung cancer patients receive systemic chemotherapy at an advanced stage disease. Cisplatin-based chemotherapy is the main regimen for treating advanced lung cancer. Recently, autophagy has become an important mechanism of cellular adaptation under starvation or cell oxidative stress. The purpose of this study was to determine whether or not autophagy can occurred in cisplatin-treated lung cancer cells. Methods: H460 cells were incubated with RPMI 1640 and treated in $5{\mu}M$ or $20{\mu}M$ cisplatin concentrations at specific time intervals. Cells surviving cisplatin treatment were measured and compared using an MTT cell viability assay to cells that underwent apoptosis with autophagy by nuclear staining, apoptotic or autophagic related proteins, and autophagic vacuoles. The development of acidic vascular organelles was using acridine orange staining and fluorescent expression of GFP-LC3 protein in its transfected cells was observed to evaluate autophagy. Results: Lung cancer cells treated with $5{\mu}M$ cisplatin-treated were less sensitive to cell death than $20{\mu}M$ cisplatin-treated cells in a time-dependent manner. Nuclear fragmentation at $5{\mu}M$ was not detected, even though it was discovered at $20{\mu}M$. Poly (ADP-ribose) polymerase cleavages were not detected in $5{\mu}M$ within 24 hours. Massive vacuolization in the cytoplasm of $5{\mu}M$ treated cells were observed. Acridine orange stain-positive cells was increased according in time-dependence manner. The autophagosome-incorporated LC3 II protein expression was increased in $5{\mu}M$ treated cells, but was not detected in $20{\mu}M$ treated cells. The expression of GFP-LC3 were increased in $5{\mu}M$ treated cells in a time-dependent manner. Conclusion: The induction of autophagy occurred in $5{\mu}M$ dose of cisplatin-treated lung cancer cells.

Cell Death and Stress Signaling in Glycogen Storage Disease Type I

  • Kim, So Youn;Bae, Yun Soo
    • Molecules and Cells
    • /
    • v.28 no.3
    • /
    • pp.139-148
    • /
    • 2009
  • Cell death has been traditionally classified in apoptosis and necrosis. Apoptosis, known as programmed cell death, is an active form of cell death mechanism that is tightly regulated by multiple cellular signaling pathways and requires ATP for its appropriate process. Apoptotic death plays essential roles for successful development and maintenance of normal cellular homeostasis in mammalian. In contrast to apoptosis, necrosis is classically considered as a passive cell death process that occurs rather by accident in disastrous conditions, is not required for energy and eventually induces inflammation. Regardless of different characteristics between apoptosis and necrosis, it has been well defined that both are responsible for a wide range of human diseases. Glycogen storage disease type I (GSD-I) is a kind of human genetic disorders and is caused by the deficiency of a microsomal protein, glucose-6-phosphatase-${\alpha}$ ($G6Pase-{\alpha}$) or glucose-6-phosphate transporter (G6PT) responsible for glucose homeostasis, leading to GSD-Ia or GSD-Ib, respectively. This review summarizes cell deaths in GSD-I and mostly focuses on current knowledge of the neutrophil apoptosis in GSD-Ib based upon ER stress and redox signaling.